探索图像去雾网络性能提升的新路径——gUNet
2024-06-14 21:33:06作者:蔡丛锟
项目简介
在深度学习的推动下,图像去雾(Image Dehazing)的研究逐渐成为一个活跃的低级视觉课题。然而,尽管已经提出了许多去雾网络,但提高其性能的关键机制仍不清晰。为此,我们提出了一种名为gUNet的新颖方法,它对流行的U-Net架构进行了最小化修改,以实现卓越的图像去雾效果。
项目技术分析
gUNet的核心在于将U-Net中的卷积块替换为带有门控机制的残差块,并通过选择性内核融合主路径和跳跃连接的特征图。这一创新设计使得gUNet在显著降低计算开销的同时,超越了现有的state-of-the-art方法。
网络结构
gUNet的架构如图所示,其中展示了如何巧妙地结合选择性内核和门控机制来优化信息流,从而提高去雾性能。
主要结果
实验结果显示,与传统方法相比,gUNet在多个图像去雾数据集上的表现优越,能有效恢复清晰图像,改善因雾霾导致的视觉模糊。
项目特点
- 轻量高效:通过对U-Net进行最小化改造,gUNet在保持高性能的同时,显著降低了计算复杂度。
- 创新设计:结合门控机制的残差块和选择性内核,实现了精细的信息融合,提高了去雾效果。
- 广泛验证:通过详尽的消融研究,我们证明了这些关键设计对于图像去雾网络性能提升的重要性。
- 全面资源:包括代码、预训练模型以及训练日志在内的所有资源已公开,便于复现和进一步研究。
开始使用
项目已在PyTorch 1.12.1+CUDA 11.3环境下测试通过,只需简单几步即可开始训练和评估:
- 创建并激活Python环境,安装必要的依赖库。
- 下载预训练模型和数据集至指定目录。
- 修改配置文件后运行脚本进行训练或测试。
引用
如果你在研究中使用了gUNet,请引用我们的论文:
@article{song2022vision,
title={Rethinking Performance Gains in Image Dehazing Networks},
author={Song, Yuda and Zhou, Yang and Qian, Hui and Du, Xin},
journal={arXiv preprint arXiv:2209.11448},
year={2022}
}
gUNet不仅是一个高效的图像去雾工具,也是一个研究新思路,帮助我们更深入理解去雾网络的性能提升机制。立即加入,体验gUNet带来的优质去雾效果,开启你的低级视觉探索之旅!
登录后查看全文
热门内容推荐
最新内容推荐
XXMI-Launcher v1.8.4版本技术解析与优化改进 Wundergraph Cosmo控制平面0.122.0版本技术解析 在go-binance中实现衍生品OTOCO订单的策略 Git-Commit-ID-Maven-Plugin 8.0.0+版本在多模块项目中生成空git.properties文件问题分析 Mixpost项目中Mastodon关注者导入失败问题分析与解决方案 OpenAI-Go JSON 编码器字符转义问题解析 OP-TEE项目中TEE_AllocateOperation内存分配错误分析与解决方案 SD WebUI Regional Prompter 扩展在ReForge中的字符限制问题分析与解决方案 ScoopInstaller/Main项目中MySQL更新失败的排查与解决 解决Dj-Stripe迁移时出现的PostgreSQL类型不匹配问题
项目优选
收起

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
295
1.01 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
503
398

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

React Native鸿蒙化仓库
C++
116
199

openGauss kernel ~ openGauss is an open source relational database management system
C++
62
144

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
97
251

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
357
341

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
581
41

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
381
37

扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
21
2