探索图像去雾网络性能提升的新路径——gUNet
2024-06-14 21:33:06作者:蔡丛锟
项目简介
在深度学习的推动下,图像去雾(Image Dehazing)的研究逐渐成为一个活跃的低级视觉课题。然而,尽管已经提出了许多去雾网络,但提高其性能的关键机制仍不清晰。为此,我们提出了一种名为gUNet的新颖方法,它对流行的U-Net架构进行了最小化修改,以实现卓越的图像去雾效果。
项目技术分析
gUNet的核心在于将U-Net中的卷积块替换为带有门控机制的残差块,并通过选择性内核融合主路径和跳跃连接的特征图。这一创新设计使得gUNet在显著降低计算开销的同时,超越了现有的state-of-the-art方法。
网络结构
gUNet的架构如图所示,其中展示了如何巧妙地结合选择性内核和门控机制来优化信息流,从而提高去雾性能。

主要结果
实验结果显示,与传统方法相比,gUNet在多个图像去雾数据集上的表现优越,能有效恢复清晰图像,改善因雾霾导致的视觉模糊。

项目特点
- 轻量高效:通过对U-Net进行最小化改造,gUNet在保持高性能的同时,显著降低了计算复杂度。
- 创新设计:结合门控机制的残差块和选择性内核,实现了精细的信息融合,提高了去雾效果。
- 广泛验证:通过详尽的消融研究,我们证明了这些关键设计对于图像去雾网络性能提升的重要性。
- 全面资源:包括代码、预训练模型以及训练日志在内的所有资源已公开,便于复现和进一步研究。
开始使用
项目已在PyTorch 1.12.1+CUDA 11.3环境下测试通过,只需简单几步即可开始训练和评估:
- 创建并激活Python环境,安装必要的依赖库。
- 下载预训练模型和数据集至指定目录。
- 修改配置文件后运行脚本进行训练或测试。
引用
如果你在研究中使用了gUNet,请引用我们的论文:
@article{song2022vision,
title={Rethinking Performance Gains in Image Dehazing Networks},
author={Song, Yuda and Zhou, Yang and Qian, Hui and Du, Xin},
journal={arXiv preprint arXiv:2209.11448},
year={2022}
}
gUNet不仅是一个高效的图像去雾工具,也是一个研究新思路,帮助我们更深入理解去雾网络的性能提升机制。立即加入,体验gUNet带来的优质去雾效果,开启你的低级视觉探索之旅!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869