首页
/ 推荐使用:AECR-Net - 单张图像去雾的对比学习框架

推荐使用:AECR-Net - 单张图像去雾的对比学习框架

2024-05-20 22:34:30作者:秋泉律Samson

在图像处理领域,去雾技术是一种至关重要的任务,它能够从模糊不清的图像中恢复出清晰细节,提升视觉体验。今天,我们有幸向您推荐一个创新的开源项目——AECR-Net,这是一个基于PyTorch实现的高效单图像去雾模型,其研究论文已被CVPR2021录用。

项目介绍

AECR-Net利用对比学习策略,实现了紧凑且高效的单图像去雾效果。其核心是CR(Contextual Reasoning)损失函数,通过该损失函数,AECR-Net能够在不增加计算复杂性的情况下提高去雾性能。此外,项目还提供了预训练模型,方便开发者直接应用或进行进一步的研究。

AECR-Net架构图

该项目不仅包括完整的模型实现,还贴心地为用户提供了直观的示例图像,让您一眼就能看到去雾前后的对比(见下方图片)。

<img src="img/example.png" style="zoom:38%;" />

项目技术分析

AECR-Net的核心在于它的对比学习方法和CR损失函数。对比学习使得模型可以从单一输入图像中学习到清晰与模糊之间的语义差异,而CR损失则强化了模型对上下文信息的理解,提高了恢复图像质量的能力。

应用场景

无论是摄影爱好者希望改善因大气雾气导致的照片质量,还是自动驾驶系统需要准确识别前方路况,亦或是无人机遥感图像处理,AECR-Net都能发挥重要作用。此技术同样适用于增强监控摄像头的低能见度环境下的图像识别能力。

项目特点

  • 高效: 采用对比学习策略,在保持高去雾性能的同时,模型保持轻量化。
  • 鲁棒: 通过CR损失,模型对复杂的雾天环境具有良好的适应性。
  • 易于使用: 提供PyTorch和MindSpore两个版本,满足不同开发平台的需求,并提供预训练模型,简化了部署流程。
  • 开放源码: 完整的代码库和详细文档,鼓励社区参与和改进。

预训练模型下载链接已给出,只需简单几步,您就可以开始使用这一强大的去雾工具:

https://pan.baidu.com/s/13crsXwwhkI5A3MlHtPihuA 密码: xhyi

如果您正在寻找一种高性能的单图像去雾解决方案,AECR-Net绝对值得尝试。快来加入这个项目,一起探索更清晰的世界吧!

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
263
53
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
64
16
open-eBackupopen-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-jobxxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27