探索深度学习图像去雾:PyTorch-Image-Dehazing
2024-05-20 15:28:07作者:明树来
探索深度学习图像去雾:PyTorch-Image-Dehazing
项目介绍
在图像处理领域,图像去雾是提升图像清晰度和视觉效果的关键技术之一。PyTorch-Image-Dehazing 是一个由PyTorch实现的开源项目,专注于单张图片的去雾网络模型。这个库提供了一个简洁的框架,使得研究人员和开发人员能够轻松地训练和测试不同去雾算法。
项目技术分析
目前,该项目实现了AOD-Net模型,这是一个非常轻量级的模型,大小小于10KB,但却能产生令人满意的结果。PyTorch-Image-Dehazing 基于Python 3和PyTorch 0.4构建,对于熟悉这两者的技术人员来说,这是一个易于理解和操作的平台。
训练过程只需运行train.py脚本,程序会在每个周期结束后自动将验证结果保存到“samples”文件夹,并将模型快照存储在“snapshots”文件夹中。而测试阶段,通过dehaze.py脚本,可以对"test_images"文件夹中的图片进行去雾处理,处理后的图片会保存在"results"文件夹中。
项目及技术应用场景
PyTorch-Image-Dehazing 的应用场景广泛,包括但不限于:
- 智能交通系统:去除因雾霾导致的图像模糊,提高车辆检测和识别的准确性。
- 自动驾驶:为自动驾驶系统提供更清晰的路况信息,增强安全性。
- 照片编辑应用:为用户提供一键式去雾功能,提升照片质量。
- 安防监控:改善恶劣天气下监控摄像头的视图质量。
项目特点
- 易用性:依赖项明确,代码结构清晰,快速上手。
- 灵活性:基于PyTorch,可轻松扩展到其他深度学习模型或优化方法。
- 效率:支持轻量级模型如AOD-Net,即使在资源有限的设备上也能运行。
- 实时性能:由于模型体积小,对于实时应用具有较高的适用性。
- 可视化:自动保存训练结果和测试结果,便于评估和调试。
以下是一些使用预训练模型得到的去雾结果示例:
如果你正在寻找一款强大的图像去雾工具,或者希望在自己的项目中集成这项技术,那么PyTorch-Image-Dehazing 绝对值得一试!
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178





