AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.36版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架和工具,使开发者能够快速部署深度学习应用而无需从零开始配置环境。这些容器经过AWS优化,可直接在EC2、EKS、SageMaker等AWS服务上运行。
本次发布的v1.36版本主要针对PyTorch框架在Graviton处理器上的推理场景进行了更新。Graviton是AWS基于ARM架构自主研发的处理器,相比传统x86架构处理器,在性价比和能效比方面具有优势。这个版本特别适配了AWS SageMaker服务,为机器学习推理任务提供了开箱即用的解决方案。
核心镜像内容
该版本的核心镜像是基于Ubuntu 20.04操作系统构建的PyTorch 2.3.0推理容器,支持Python 3.11环境。镜像中预装了完整的PyTorch生态系统,包括:
- 主框架:PyTorch 2.3.0(CPU版本)
- 配套工具:torchvision 0.18.0、torchaudio 2.3.0
- 模型服务组件:torchserve 0.11.0和torch-model-archiver 0.11.0
- 常用数据处理库:NumPy 1.26.4、pandas 2.2.2、OpenCV 4.10.0
- 机器学习工具:scikit-learn 1.5.0、scipy 1.14.0
- AWS工具链:boto3 1.34.137、awscli 1.33.19等
技术特点与优势
-
Graviton处理器优化:该容器专门针对AWS Graviton处理器架构进行了优化,能够充分发挥ARM架构在机器学习推理任务中的性能优势,特别是在成本效益方面表现突出。
-
完整的PyTorch推理生态:不仅包含PyTorch核心框架,还集成了模型服务工具torchserve和模型归档工具torch-model-archiver,用户可以轻松地将训练好的模型部署为生产服务。
-
丰富的预装库:容器中预装了数据处理、计算机视觉、科学计算等常用Python库,减少了用户自行安装依赖的工作量。
-
SageMaker服务集成:特别针对AWS SageMaker服务进行了适配,包含了sagemaker-pytorch-inference 2.0.24等专用组件,简化了在SageMaker上的部署流程。
-
开发工具支持:除了机器学习相关组件外,还包含了emacs等开发工具,方便用户在容器内直接进行开发和调试。
适用场景
这个版本的DLC容器特别适合以下场景:
- 需要在AWS Graviton处理器上运行PyTorch推理任务
- 使用AWS SageMaker服务部署PyTorch模型
- 追求高性价比的机器学习推理解决方案
- 需要快速部署标准化的PyTorch推理环境
版本兼容性
该容器基于PyTorch 2.3.0构建,兼容Python 3.11环境。用户在选择时应注意框架版本与自身模型的兼容性。对于需要GPU加速的场景,应考虑选择对应的GPU版本容器。
AWS Deep Learning Containers的持续更新体现了AWS对机器学习基础设施的重视,为开发者提供了更多高效、稳定的选择。这个Graviton专用版本的发布,特别为关注成本效益的用户提供了新的可能性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00