Unity DOTS Entity Component System 示例项目教程
1. 项目介绍
Unity 的 DOTS(Data-Oriented Technology Stack)旨在提供高性能的游戏开发框架,其中包括 Entity Component System(ECS)。这个开源项目 EntityComponentSystemSamples 是一组示例,旨在帮助开发者了解如何在 Unity 中使用 ECS、C# Job 系统以及 Burst 编译器来优化游戏性能。这些示例涵盖了从基础概念到更复杂的系统,包括模拟和网络同步。
2. 项目快速启动
安装 Unity 和所需包
确保安装了支持 DOTS 的 Unity 版本,如 Unity 2022.3 LTS。你可以通过 Unity Hub 来管理多个版本的 Unity。打开 Hub 并安装相应版本。
接下来,在 Unity 中安装以下包:
- Entities
- Netcode
- Physics
- Entities Graphics (选择适用于你的图形管线的包,如 HDRP 或 URP)
创建新项目并导入示例
创建一个新项目,并使用 Package Manager 导入 EntityComponentSystemSamples 库。按照以下步骤操作:
- 打开 Unity Package Manager。
- 转到 "Window" > "Package Manager"。
- 在左上角选择 "Add package from git URL"。
- 输入仓库地址:
https://github.com/Unity-Technologies/EntityComponentSystemSamples.git。 - 点击 "Add",等待包下载并安装完成。
运行示例
在导入完成后,你可以在 "Assets/Samples/ECS" 文件夹中找到各个示例场景。打开一个场景,然后点击 "Play" 按钮运行它。
例如,尝试运行 "HelloCube" 场景:
- 导航至
Assets\Samples\Entities\01_HelloCube\Scenes文件夹。 - 双击 "HelloCube.unity" 场景以打开它。
- 点击 "Play" 开始演示。
3. 应用案例和最佳实践
这个项目包含一系列逐步教程和示例,展示了如何使用 ECS 和相关技术实现不同功能:
- Jobs Tutorial:展示如何创建和调度工作。
- HelloCube:基础的实体使用,如创建和移动渲染实体。
- Tanks:结合基本元素展示小规模模拟。
- Kickball:深入的模拟,涉及更多细节。
- StateChange:演示处理实体状态的不同方法。
观看相关的视频教程,仔细阅读代码,理解它们如何协同工作,以便于你在自己的项目中应用这些概念。
4. 典型生态项目
除了提供的示例外,Unity DOTS 生态还包括其他组件,比如 Baking(烘焙)、Streaming(用于大型世界和场景管理),以及其他各种应用场景。推荐关注以下几个方面来扩展你的知识面:
- Burst 编译器:了解如何利用 Burst 提升计算密集型任务的性能。
- Physics:学习新的物理引擎,实现确定性刚体动力学和空间查询。
- Graphics:研究如何在 HDRP 或 URP 中集成 ECS 以优化图形性能。
- Networking:探索 DOTS Netcode 实现多人在线游戏的可能性。
要深入了解更多信息,访问 Unity 的官方网站,特别是关于 "Performance by Default" 部分,这是对整个 DOTS 计划的全面概述。
现在,你已经具备了开始探索和使用 Unity DOTS Entity Component System 示例项目的基础,祝你在游戏开发旅程中取得成功!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00