Kubecost Helm Chart 安装与使用指南
1. 项目目录结构及介绍
Kubecost Helm Chart 项目的目录结构如下:
cost-analyzer-helm-chart/
├── devcontainer/
├── github/
├── cost-analyzer/
├── docs/images/
├── historical-builds/
├── .gitignore
├── DEVELOPMENT.md
├── ISSUE_GUIDELINES.md
├── LICENSE
├── README.md
├── kubecost.yaml
├── kustomization.yaml
目录结构介绍
- devcontainer/: 包含开发环境相关的配置文件。
- github/: 包含 GitHub 相关的配置文件。
- cost-analyzer/: 包含 Kubecost 的核心代码和配置文件。
- docs/images/: 包含文档中使用的图片资源。
- historical-builds/: 包含历史构建的文件。
- .gitignore: Git 忽略文件配置。
- DEVELOPMENT.md: 开发指南文档。
- ISSUE_GUIDELINES.md: 问题提交指南文档。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明文档。
- kubecost.yaml: Kubecost 的 Kubernetes 资源配置文件。
- kustomization.yaml: Kustomize 配置文件。
2. 项目的启动文件介绍
Kubecost Helm Chart 的启动文件主要是 kubecost.yaml 和 kustomization.yaml。
kubecost.yaml
kubecost.yaml 是 Kubecost 的核心配置文件,包含了 Kubernetes 资源的定义,如 Deployment、Service、ConfigMap 等。通过这个文件,可以定义 Kubecost 在 Kubernetes 集群中的部署方式。
kustomization.yaml
kustomization.yaml 是 Kustomize 工具的配置文件,用于定制 Kubernetes 资源的配置。通过这个文件,可以对 kubecost.yaml 中的资源进行覆盖和扩展,以满足不同的部署需求。
3. 项目的配置文件介绍
Kubecost Helm Chart 的配置文件主要包括 values.yaml 和 kubecost.yaml。
values.yaml
values.yaml 是 Helm Chart 的默认配置文件,包含了 Kubecost 的各种配置参数及其默认值。通过修改这个文件,可以定制 Kubecost 的行为,如 Prometheus 的持久化存储、Ingress 的配置、资源请求和限制等。
kubecost.yaml
kubecost.yaml 是 Kubecost 的 Kubernetes 资源配置文件,包含了 Deployment、Service、ConfigMap 等资源的定义。通过这个文件,可以定义 Kubecost 在 Kubernetes 集群中的部署方式。
总结
通过以上介绍,您可以了解到 Kubecost Helm Chart 的目录结构、启动文件和配置文件的基本情况。这些文件共同构成了 Kubecost 在 Kubernetes 集群中的部署和配置体系,帮助您更好地管理和监控 Kubernetes 集群的资源使用情况。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00