Unsloth项目中如何输出模型训练时的Logits值
2025-05-03 01:11:18作者:郦嵘贵Just
在深度学习模型训练过程中,监控和检查模型的中间输出(如logits)对于调试和分析模型行为至关重要。本文将介绍在使用Unsloth项目进行模型训练时如何输出logits值的技术细节。
为什么需要输出Logits
Logits是模型在softmax激活函数之前的原始输出值,它们包含了模型对每个类别的"原始信心分数"。在训练过程中查看logits可以帮助开发者:
- 诊断模型是否出现梯度消失或爆炸问题
- 分析模型对不同类别的区分能力
- 调试模型输出异常的情况
- 进行更细致的模型性能分析
Unsloth的默认行为
Unsloth项目为了提高训练效率,默认采用了融合交叉熵损失(fused cross-entropy loss)的技术。这种优化技术将logits计算和损失计算合并为一个操作,虽然提高了计算效率,但也导致开发者无法直接访问logits值。
如何启用Logits输出
要在Unsloth项目中输出logits值,需要在训练脚本的最开始添加以下代码:
import os
os.environ["UNSLOTH_RETURN_LOGITS"] = "1"
这段代码通过设置环境变量UNSLOTH_RETURN_LOGITS为"1",告诉Unsloth框架在计算过程中保留并返回logits值。
性能考量
需要注意的是,启用logits输出会带来一定的性能开销:
- 额外的内存占用:需要存储中间计算结果
- 计算时间增加:无法使用融合优化的计算路径
- 数据传输开销:需要在计算图中保留额外的输出
因此,建议仅在调试和分析阶段启用此功能,在生产训练环境中保持默认的优化设置。
实际应用场景
在实际项目中,输出logits值特别适用于以下场景:
- 模型训练初期验证:检查模型是否学习到了有意义的特征
- 类别不平衡问题分析:观察模型对不同类别的响应强度
- 自定义损失函数开发:需要基于logits实现特殊损失函数
- 模型蒸馏过程:需要获取教师模型的中间输出
总结
Unsloth项目通过环境变量提供了灵活的logits输出控制,既保证了默认情况下的高效训练,又为开发者提供了必要的调试手段。理解这一机制有助于开发者更好地利用Unsloth进行模型开发和优化。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217