Unsloth项目中如何输出模型训练时的Logits值
2025-05-03 11:43:50作者:郦嵘贵Just
在深度学习模型训练过程中,监控和检查模型的中间输出(如logits)对于调试和分析模型行为至关重要。本文将介绍在使用Unsloth项目进行模型训练时如何输出logits值的技术细节。
为什么需要输出Logits
Logits是模型在softmax激活函数之前的原始输出值,它们包含了模型对每个类别的"原始信心分数"。在训练过程中查看logits可以帮助开发者:
- 诊断模型是否出现梯度消失或爆炸问题
- 分析模型对不同类别的区分能力
- 调试模型输出异常的情况
- 进行更细致的模型性能分析
Unsloth的默认行为
Unsloth项目为了提高训练效率,默认采用了融合交叉熵损失(fused cross-entropy loss)的技术。这种优化技术将logits计算和损失计算合并为一个操作,虽然提高了计算效率,但也导致开发者无法直接访问logits值。
如何启用Logits输出
要在Unsloth项目中输出logits值,需要在训练脚本的最开始添加以下代码:
import os
os.environ["UNSLOTH_RETURN_LOGITS"] = "1"
这段代码通过设置环境变量UNSLOTH_RETURN_LOGITS为"1",告诉Unsloth框架在计算过程中保留并返回logits值。
性能考量
需要注意的是,启用logits输出会带来一定的性能开销:
- 额外的内存占用:需要存储中间计算结果
- 计算时间增加:无法使用融合优化的计算路径
- 数据传输开销:需要在计算图中保留额外的输出
因此,建议仅在调试和分析阶段启用此功能,在生产训练环境中保持默认的优化设置。
实际应用场景
在实际项目中,输出logits值特别适用于以下场景:
- 模型训练初期验证:检查模型是否学习到了有意义的特征
- 类别不平衡问题分析:观察模型对不同类别的响应强度
- 自定义损失函数开发:需要基于logits实现特殊损失函数
- 模型蒸馏过程:需要获取教师模型的中间输出
总结
Unsloth项目通过环境变量提供了灵活的logits输出控制,既保证了默认情况下的高效训练,又为开发者提供了必要的调试手段。理解这一机制有助于开发者更好地利用Unsloth进行模型开发和优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178