Unsloth项目中Cross Entropy Loss反向传播除零问题分析与解决
2025-05-03 15:50:26作者:沈韬淼Beryl
在深度学习模型训练过程中,Cross Entropy Loss(交叉熵损失)是分类任务中最常用的损失函数之一。近期在Unsloth项目(一个专注于高效微调大语言模型的框架)中,用户报告了一个值得注意的技术问题:在使用cut_cross_entropy实现时出现了反向传播过程中的除零错误。
问题现象
当用户尝试使用Unsloth框架微调Llama-3.2-3B-Instruct模型(4bit量化加载)时,训练过程中抛出了ZeroDivisionError。错误追踪显示问题发生在cut_cross_entropy/cce.py文件的第94行,具体是在计算梯度缩放因子时发生了"division by zero"异常。这表明在反向传播过程中,lse(log-sum-exp)变量的元素数量为零。
技术背景
在标准的交叉熵损失计算中:
- 前向传播计算预测值与真实标签的差异
- 反向传播时根据差异计算梯度
- 通常会对梯度进行归一化处理(如除以batch size或序列长度)
cut_cross_entropy是Unsloth采用的优化实现,旨在加速交叉熵计算。其反向传播中需要进行梯度缩放,公式为:
grad_scale = 1 / lse.numel()
当lse.numel()为零时就会触发除零异常。
根本原因
经过分析,这种情况可能由以下原因导致:
- 输入序列长度为0(空输入)
- 批处理维度为0(空batch)
- 模型配置或数据预处理环节出现问题
- 混合精度训练中的数值稳定性问题
在Unsloth的特定场景下,更可能与框架的优化实现和4bit量化模型的特殊处理方式有关。
解决方案
项目维护者提供了直接的解决方案:通过设置环境变量强制框架返回logits。具体实现方式是在训练脚本开头添加:
import os
os.environ["UNSLOTH_RETURN_LOGITS"] = "1"
这个解决方案的有效性表明:
- 框架内部有处理空输入的备用路径
- 强制返回logits可以避免某些优化路径中的边界条件问题
- 可能是4bit量化与优化交叉熵实现之间的兼容性问题
最佳实践建议
对于使用Unsloth或其他类似框架的用户,建议:
- 始终检查输入数据的有效性(非空、正确维度)
- 在4bit量化等特殊配置下,注意框架的特定要求
- 关注训练初期的数值稳定性
- 保持框架版本更新以获取最新修复
总结
这个案例展示了深度学习框架中数值稳定性处理的重要性,特别是在优化实现与量化技术结合的场景下。Unsloth团队通过环境变量开关提供了灵活的解决方案,既保持了性能优化,又解决了边界条件问题。对于开发者而言,这提醒我们在设计高效计算路径时,必须全面考虑各种边界情况和数值稳定性问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219