探秘Neural Text Generation with Unlikelihood Training:创新的文本生成工具
2024-05-21 02:04:36作者:裴麒琰
在人工智能领域,自然语言处理(NLP)一直在不断发展,而深度学习模型在文本生成任务上展现出了强大的潜力。今天,我们向您推荐一个名为"Neural Text Generation with Unlikelihood Training"的开源项目,这是一个基于PyTorch的实现,旨在改进传统的最大似然估计(MLE)训练方法,提高文本生成的质量和多样性。
项目介绍
该项目由 Sean Welleck 等人开发,他们在论文中提出了一种新的训练策略——反概率训练(Unlikelihood Training)。它包括了对fairseq库的自定义实现,以及用于微调GPT-2模型的脚本。项目提供了一个完整的框架,涵盖了从设置到评估的全过程,让开发者能够方便地应用和研究这种新颖的训练方式。
项目技术分析
核心的反概率训练方法通过惩罚那些过于常见或不恰当的预测来优化模型,这有助于生成更独特且语义连贯的文本序列。代码集成了fairseq库的功能,并且可以与pytorch-transformers库配合,便于在GPT-2这样的大模型上进行实验。此外,项目还提供了预训练模型和详细的训练、评估脚本,使得研究者和开发者能快速上手实践。
应用场景
这个项目适用于任何依赖文本生成的任务,如自动摘要、机器翻译、对话系统和创意写作等。通过改进标准的序列建模,它可以提高模型在生成任务上的性能,特别是在减少重复和提高多样性的场景下。
项目特点
- 反概率训练新策略:以创新的方式调整最大似然估计,鼓励模型产生更少的常见错误和重复文本。
- 集成fairseq和GPT-2:结合两个强大框架的优势,支持大规模预训练模型的微调。
- 详尽的文档:提供了从安装到训练、评估的完整指导,易于理解和使用。
- 预训练模型:提供预训练模型,允许用户直接进行测试和比较,加快实验进程。
通过这个项目,您可以深入了解文本生成的最新进展,并有机会提升您的模型在实际应用中的表现。无论是研究者还是开发者,都可以在这个平台上找到探索和实验的新机会,共同推动NLP技术的进步。立即尝试,开启您的文本生成之旅吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19