Milvus数据库并发操作中的计数异常问题分析与解决方案
2025-05-04 06:11:11作者:彭桢灵Jeremy
问题背景
在分布式向量数据库Milvus的实际应用中,开发团队发现了一个关键的性能问题:当系统在高并发环境下执行插入和删除操作时,使用count(*)查询返回的结果数量会超出预期值。这一问题在Milvus的master分支版本中被发现,特别是在数据节点和索引节点合并部署的场景下表现尤为明显。
问题现象
测试环境配置了1个数据节点和1个流处理节点,每个节点分配2核CPU和8GB内存。测试过程中,开发团队按照以下步骤操作:
- 创建集合并建立索引
- 批量插入3000万条数据(每次批量5万条)后执行flush操作
- 重新建立索引并加载数据
- 并发执行插入、删除和搜索操作
测试结果显示,通过count(*)查询返回的结果数量(36,988,600条)明显高于通过binlog扫描得到的实际数据量(36,574,800条),存在约41万条的差异。
技术分析
经过深入排查,发现问题根源在于Milvus处理L0段(Level 0 segment)时的起始位置(start_position)设置。当start_position被错误地设置为0时,会导致系统在计算记录总数时出现偏差。
在Milvus的架构设计中,L0段是数据写入的第一层存储结构,负责接收实时写入的数据。start_position参数决定了系统从哪个位置开始计算有效数据记录。当该参数设置不当时,系统可能会错误地统计已被标记为删除的记录,或者重复计算某些记录。
解决方案
开发团队在master分支的2025年3月18日版本(e5c12421)中修复了这一问题。修复方案主要包括:
- 修正了L0段的start_position计算逻辑,确保其正确反映数据的实际起始位置
- 优化了并发操作下的数据一致性保证机制
- 改进了count(*)查询的执行流程,避免统计已被删除的记录
最佳实践建议
对于使用Milvus的开发团队,建议采取以下措施避免类似问题:
- 及时升级到包含修复的版本
- 在高并发写入场景下,合理配置数据节点和流处理节点的资源
- 定期验证数据一致性,特别是在执行大量删除操作后
- 考虑使用binlog扫描等底层工具进行数据校验
总结
计数异常问题是分布式数据库系统中常见的一致性挑战。Milvus团队通过分析L0段的处理逻辑,快速定位并修复了这一问题,展现了系统在持续优化数据一致性和可靠性方面的努力。这一案例也提醒开发者,在构建高并发数据系统时,需要特别关注底层存储引擎与查询逻辑之间的协同工作。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287