Milvus数据库并发操作中的计数异常问题分析与解决方案
2025-05-04 04:56:02作者:彭桢灵Jeremy
问题背景
在分布式向量数据库Milvus的实际应用中,开发团队发现了一个关键的性能问题:当系统在高并发环境下执行插入和删除操作时,使用count(*)查询返回的结果数量会超出预期值。这一问题在Milvus的master分支版本中被发现,特别是在数据节点和索引节点合并部署的场景下表现尤为明显。
问题现象
测试环境配置了1个数据节点和1个流处理节点,每个节点分配2核CPU和8GB内存。测试过程中,开发团队按照以下步骤操作:
- 创建集合并建立索引
- 批量插入3000万条数据(每次批量5万条)后执行flush操作
- 重新建立索引并加载数据
- 并发执行插入、删除和搜索操作
测试结果显示,通过count(*)查询返回的结果数量(36,988,600条)明显高于通过binlog扫描得到的实际数据量(36,574,800条),存在约41万条的差异。
技术分析
经过深入排查,发现问题根源在于Milvus处理L0段(Level 0 segment)时的起始位置(start_position)设置。当start_position被错误地设置为0时,会导致系统在计算记录总数时出现偏差。
在Milvus的架构设计中,L0段是数据写入的第一层存储结构,负责接收实时写入的数据。start_position参数决定了系统从哪个位置开始计算有效数据记录。当该参数设置不当时,系统可能会错误地统计已被标记为删除的记录,或者重复计算某些记录。
解决方案
开发团队在master分支的2025年3月18日版本(e5c12421)中修复了这一问题。修复方案主要包括:
- 修正了L0段的start_position计算逻辑,确保其正确反映数据的实际起始位置
- 优化了并发操作下的数据一致性保证机制
- 改进了count(*)查询的执行流程,避免统计已被删除的记录
最佳实践建议
对于使用Milvus的开发团队,建议采取以下措施避免类似问题:
- 及时升级到包含修复的版本
- 在高并发写入场景下,合理配置数据节点和流处理节点的资源
- 定期验证数据一致性,特别是在执行大量删除操作后
- 考虑使用binlog扫描等底层工具进行数据校验
总结
计数异常问题是分布式数据库系统中常见的一致性挑战。Milvus团队通过分析L0段的处理逻辑,快速定位并修复了这一问题,展现了系统在持续优化数据一致性和可靠性方面的努力。这一案例也提醒开发者,在构建高并发数据系统时,需要特别关注底层存储引擎与查询逻辑之间的协同工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1