DB-GPT-Hub项目中ChatGLM3-6B模型Tokenizer填充策略问题解析
在使用DB-GPT-Hub项目运行ChatGLM3-6B模型时,开发者在数据处理阶段遇到了一个关于tokenizer填充策略的断言错误。这个问题出现在数据集tokenizer处理阶段,具体表现为系统在检查填充策略时抛出"assert self.padding_side == 'left'"的断言错误。
问题背景
在自然语言处理任务中,tokenizer负责将原始文本转换为模型可以理解的数字序列。填充(padding)是预处理中的一个重要步骤,它确保所有输入序列具有相同的长度,这对于批量处理数据至关重要。填充策略决定了是在序列的左侧(left)还是右侧(right)添加填充标记。
ChatGLM3-6B模型对tokenizer的填充策略有特定要求,它强制要求使用左侧填充(left padding)策略。这种要求通常与模型的注意力机制设计或训练方式有关。
问题分析
当运行到数据集tokenizer处理阶段时,系统会检查当前tokenizer的padding_side参数。如果这个参数不是'left',就会触发断言错误。这表明项目中使用的tokenizer配置与ChatGLM3-6B模型的要求不匹配。
在DB-GPT-Hub项目中,这个问题可以通过修改load_tokenizer.py文件中的第179行代码来解决。具体来说,需要将tokenizer的填充策略明确设置为'left',以满足ChatGLM3-6B模型的要求。
解决方案
要解决这个问题,开发者需要:
- 定位到项目中的load_tokenizer.py文件
- 找到第179行代码
- 确保tokenizer的padding_side参数被设置为'left'
这种修改确保了tokenizer的填充策略与ChatGLM3-6B模型的预期完全一致,从而避免了断言错误的发生。
技术建议
对于类似的大语言模型项目,开发者应当注意:
- 不同模型可能对tokenizer有不同的配置要求
- 填充策略的选择会影响模型性能,特别是对于自回归模型
- 在集成新模型时,应仔细查阅其文档中的预处理要求
- 断言错误通常是模型特定要求的直接反映,解决这类问题需要理解模型的设计原理
通过正确处理tokenizer配置问题,可以确保数据预处理阶段与模型需求完全匹配,为后续的模型训练和推理打下良好基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00