首页
/ DB-GPT-Hub项目中ChatGLM3模型训练时的Tokenizer填充问题解析

DB-GPT-Hub项目中ChatGLM3模型训练时的Tokenizer填充问题解析

2025-07-08 01:49:22作者:庞队千Virginia

在DB-GPT-Hub项目中使用ChatGLM3模型进行训练时,开发者可能会遇到一个典型的AssertionError错误。这个错误发生在数据处理阶段,具体表现为tokenizer的padding_side参数设置不匹配导致的断言失败。

问题现象

当运行DB-GPT-Hub项目的训练脚本时,系统会抛出AssertionError异常,错误信息明确指出tokenizer的padding_side参数必须设置为"left",但实际配置与之不符。这个错误发生在tokenization_chatglm.py文件的第299行,是ChatGLM3模型特有的tokenizer实现中的一个硬性检查。

技术背景

在Transformer模型中,tokenizer负责将文本转换为模型可处理的token ID序列。padding_side参数决定了在序列长度不足最大长度时,填充(padding)应该加在序列的左侧(left)还是右侧(right)。不同模型架构对此有不同的要求:

  1. 自回归模型(如GPT系列)通常需要左填充(left-padding)
  2. 双向模型(如BERT)通常使用右填充(right-padding)
  3. 某些特定架构可能有特殊要求

ChatGLM3作为GLM架构的模型,其官方实现默认要求使用左填充策略,这在tokenizer代码中通过断言(assert)进行了强制检查。

解决方案

针对这个问题,有两种可行的解决方案:

  1. 修改tokenizer配置:在训练脚本中显式设置tokenizer的padding_side参数为"left"

    tokenizer.padding_side = "left"
    
  2. 修改模型实现:如问题发现者所做的,直接修改tokenization_chatglm.py文件中的断言条件,将"left"改为"right"。但这种方法需要谨慎,因为可能影响模型性能。

最佳实践建议

  1. 保持与官方实现一致:建议优先采用第一种方案,保持与ChatGLM3官方实现的一致性
  2. 理解模型需求:在使用任何预训练模型前,应该充分了解其tokenizer的特殊要求
  3. 错误处理:可以在代码中添加更友好的错误提示,而非直接使用assert
  4. 配置管理:将这类模型特定参数集中管理,避免散落在代码各处

深入思考

这个问题反映了预训练模型使用中的一个常见挑战:不同模型家族有着不同的预处理要求。作为开发者,我们需要:

  1. 仔细阅读模型文档,了解其输入输出规范
  2. 在集成新模型时,建立完善的测试流程
  3. 考虑使用适配器模式统一不同模型的接口差异
  4. 记录模型特定的配置要求,形成项目知识库

通过系统化地处理这类问题,可以大大提高大模型项目的开发效率和稳定性。

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
253
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
347
381
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0