Django reCAPTCHA 使用与技术文档
1. 安装指南
首先,您需要在Django reCAPTCHA的页面上注册reCAPTCHA。注册完成后,您将获得一对公钥和私钥,这对于reCAPTCHA的正常工作至关重要。
接下来,通过pip命令安装Django reCAPTCHA:
pip install django-recaptcha
在您的Django项目的settings.py文件中,添加'django_recaptcha'到INSTALLED_APPS列表中:
INSTALLED_APPS = [
# ... 其他应用 ...
'django_recaptcha',
# ... 其他应用 ...
]
然后,在settings.py中配置reCAPTCHA的公钥和私钥:
RECAPTCHA_PUBLIC_KEY = '您的reCAPTCHA公钥'
RECAPTCHA_PRIVATE_KEY = '您的reCAPTCHA私钥'
如果需要使用代理,可以设置RECAPTCHA_PROXY:
RECAPTCHA_PROXY = {'http': 'http://127.0.0.1:8000', 'https': 'https://127.0.0.1:8000'}
如果www.google.com无法访问,可以将RECAPTCHA_DOMAIN设置为www.recaptcha.net:
RECAPTCHA_DOMAIN = 'www.recaptcha.net'
2. 项目的使用说明
要在表单中添加reCAPTCHA,可以使用ReCaptchaField字段类。默认情况下,它将渲染一个reCAPTCHA V2 Checkbox。
例如:
from django import forms
from django_recaptcha.fields import ReCaptchaField
class FormWithCaptcha(forms.Form):
captcha = ReCaptchaField()
您还可以在运行时指定密钥,通过向构造函数传递private_key或public_key参数:
captcha = ReCaptchaField(
public_key='您的公钥',
private_key='您的私钥'
)
3. 项目API使用文档
ReCaptchaField支持以下几种小部件:
ReCaptchaV2Checkbox:用于Google reCAPTCHA V2 Checkbox。ReCaptchaV2Invisible:用于Google reCAPTCHA V2 Invisible。ReCaptchaV3:用于Google reCAPTCHA V3。
要使用非默认的reCAPTCHA V2 Checkbox小部件,只需替换ReCaptchaField的小部件。例如:
from django import forms
from django_recaptcha.fields import ReCaptchaField
from django_recaptcha.widgets import ReCaptchaV2Invisible
class FormWithCaptcha(forms.Form):
captcha = ReCaptchaField(widget=ReCaptchaV2Invisible)
reCAPTCHA V3还返回一个分数值,用于确定页面交互是机器人的可能性。可以通过设置RECAPTCHA_REQUIRED_SCORE来设定项目范围的分数限制:
RECAPTCHA_REQUIRED_SCORE = 0.85
也可以在运行时为每个字段指定分数:
captcha = fields.ReCaptchaField(
widget=ReCaptchaV3(required_score=0.85)
)
如果分数不符合要求,字段验证将失败,并记录错误信息。
reCAPTCHA V3 API还支持传递一个动作值,用于将reCAPTCHA验证与您网站上的特定表单关联起来,以便进行风险分析。设置动作值时,可以使用以下方式:
captcha = fields.ReCaptchaField(
widget=widgets.ReCaptchaV3(
action='signup'
)
)
设置动作是可选的,如果不指定动作,则不会向reCAPTCHA V3 API传递任何动作。
4. 项目安装方式
请遵循上述安装指南中的步骤进行安装。确保已经注册了reCAPTCHA并获取了公钥和私钥,然后通过pip安装Django reCAPTCHA,并在Django项目的配置文件中进行了相应设置。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00