Django reCAPTCHA 使用与技术文档
1. 安装指南
首先,您需要在Django reCAPTCHA的页面上注册reCAPTCHA。注册完成后,您将获得一对公钥和私钥,这对于reCAPTCHA的正常工作至关重要。
接下来,通过pip命令安装Django reCAPTCHA:
pip install django-recaptcha
在您的Django项目的settings.py文件中,添加'django_recaptcha'到INSTALLED_APPS列表中:
INSTALLED_APPS = [
# ... 其他应用 ...
'django_recaptcha',
# ... 其他应用 ...
]
然后,在settings.py中配置reCAPTCHA的公钥和私钥:
RECAPTCHA_PUBLIC_KEY = '您的reCAPTCHA公钥'
RECAPTCHA_PRIVATE_KEY = '您的reCAPTCHA私钥'
如果需要使用代理,可以设置RECAPTCHA_PROXY:
RECAPTCHA_PROXY = {'http': 'http://127.0.0.1:8000', 'https': 'https://127.0.0.1:8000'}
如果www.google.com无法访问,可以将RECAPTCHA_DOMAIN设置为www.recaptcha.net:
RECAPTCHA_DOMAIN = 'www.recaptcha.net'
2. 项目的使用说明
要在表单中添加reCAPTCHA,可以使用ReCaptchaField字段类。默认情况下,它将渲染一个reCAPTCHA V2 Checkbox。
例如:
from django import forms
from django_recaptcha.fields import ReCaptchaField
class FormWithCaptcha(forms.Form):
captcha = ReCaptchaField()
您还可以在运行时指定密钥,通过向构造函数传递private_key或public_key参数:
captcha = ReCaptchaField(
public_key='您的公钥',
private_key='您的私钥'
)
3. 项目API使用文档
ReCaptchaField支持以下几种小部件:
ReCaptchaV2Checkbox:用于Google reCAPTCHA V2 Checkbox。ReCaptchaV2Invisible:用于Google reCAPTCHA V2 Invisible。ReCaptchaV3:用于Google reCAPTCHA V3。
要使用非默认的reCAPTCHA V2 Checkbox小部件,只需替换ReCaptchaField的小部件。例如:
from django import forms
from django_recaptcha.fields import ReCaptchaField
from django_recaptcha.widgets import ReCaptchaV2Invisible
class FormWithCaptcha(forms.Form):
captcha = ReCaptchaField(widget=ReCaptchaV2Invisible)
reCAPTCHA V3还返回一个分数值,用于确定页面交互是机器人的可能性。可以通过设置RECAPTCHA_REQUIRED_SCORE来设定项目范围的分数限制:
RECAPTCHA_REQUIRED_SCORE = 0.85
也可以在运行时为每个字段指定分数:
captcha = fields.ReCaptchaField(
widget=ReCaptchaV3(required_score=0.85)
)
如果分数不符合要求,字段验证将失败,并记录错误信息。
reCAPTCHA V3 API还支持传递一个动作值,用于将reCAPTCHA验证与您网站上的特定表单关联起来,以便进行风险分析。设置动作值时,可以使用以下方式:
captcha = fields.ReCaptchaField(
widget=widgets.ReCaptchaV3(
action='signup'
)
)
设置动作是可选的,如果不指定动作,则不会向reCAPTCHA V3 API传递任何动作。
4. 项目安装方式
请遵循上述安装指南中的步骤进行安装。确保已经注册了reCAPTCHA并获取了公钥和私钥,然后通过pip安装Django reCAPTCHA,并在Django项目的配置文件中进行了相应设置。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00