guided-stereo 的项目扩展与二次开发
2025-06-06 16:46:31作者:滕妙奇
项目的基础介绍
guided-stereo 是一个开源项目,由 Matteo Poggi 等人开发,旨在展示“引导立体匹配”技术的演示代码。该项目是基于他们在 CVPR 2019 会议上发表的论文《Guided Stereo Matching》实现的。引导立体匹配技术通过利用少量的稀疏且可靠的深度测量值来增强立体匹配算法,从而提高深度图的准确性和鲁棒性。
项目的核心功能
该项目的主要功能是通过引入外部的稀疏深度测量值(如 LiDAR 数据)来引导立体匹配过程,从而改善深度学习网络在新环境中的性能下降问题。具体来说,它能够:
- 利用预训练的深度立体网络进行改进。
- 从头开始训练以提高准确性和鲁棒性。
- 与传统立体算法(如 SGM)结合使用。
项目使用了哪些框架或库?
该项目主要使用以下框架和库:
- PyTorch:用于深度学习模型的开发和训练。
- OpenCV:用于图像处理和计算机视觉相关任务。
- PIL(Python Imaging Library):用于图像处理。
- NumPy:用于数值计算。
项目的代码目录及介绍
项目的代码目录结构如下:
dataloader:包含用于加载数据的脚本。images:存储输入图像和结果图像。models:包含立体匹配模型的代码。.gitignore:指定 Git 忽略的文件。LICENSE.md:项目的许可证信息。README.md:项目说明文件。get_weights_and_data.sh:用于获取预训练模型和数据的脚本。run.py:主脚本,用于运行立体匹配演示。
对项目进行扩展或者二次开发的方向
-
增加数据源:可以尝试整合更多的数据源,如不同类型的 LiDAR 设备数据,以进一步提高算法的适用性和准确性。
-
算法优化:可以对现有算法进行优化,比如改进特征提取、匹配策略或后处理步骤,以提高匹配质量和效率。
-
模型泛化能力:通过增加更多样化的数据集进行训练,提高模型在不同场景下的泛化能力。
-
用户界面开发:开发一个用户友好的图形界面,使得非专业人员也能轻松使用和调整参数。
-
集成到其他应用:将该项目集成到自动驾驶、机器人导航或增强现实等应用中,以提供更准确的深度信息。
通过这些扩展和二次开发,guided-stereo 项目有望在计算机视觉和机器人技术领域发挥更大的作用。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
486
3.6 K
Ascend Extension for PyTorch
Python
297
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
266
113
暂无简介
Dart
736
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
863
458
React Native鸿蒙化仓库
JavaScript
295
343
仓颉编译器源码及 cjdb 调试工具。
C++
149
880