skorch 项目教程
2024-09-14 02:52:24作者:段琳惟
1. 项目介绍
skorch 是一个与 scikit-learn 兼容的神经网络库,它通过封装 PyTorch 来实现这一目标。skorch 的目标是让用户能够使用 PyTorch 的同时,享受到 scikit-learn 的简洁接口和强大功能。skorch 不仅简化了训练循环,还提供了许多方便的功能,如学习率调度器、早停机制、检查点等。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 3.8 或更高版本。然后,你可以通过以下命令安装 skorch:
pip install -U skorch
快速启动示例
以下是一个简单的示例,展示了如何使用 skorch 训练一个神经网络分类器:
import numpy as np
from sklearn.datasets import make_classification
from torch import nn
from skorch import NeuralNetClassifier
# 生成数据集
X, y = make_classification(1000, 20, n_informative=10, random_state=0)
X = X.astype(np.float32)
y = y.astype(np.int64)
# 定义神经网络模型
class MyModule(nn.Module):
def __init__(self, num_units=10, nonlin=nn.ReLU()):
super().__init__()
self.dense0 = nn.Linear(20, num_units)
self.nonlin = nonlin
self.dropout = nn.Dropout(0.5)
self.dense1 = nn.Linear(num_units, num_units)
self.output = nn.Linear(num_units, 2)
self.softmax = nn.Softmax(dim=-1)
def forward(self, X, **kwargs):
X = self.nonlin(self.dense0(X))
X = self.dropout(X)
X = self.nonlin(self.dense1(X))
X = self.softmax(self.output(X))
return X
# 初始化 skorch 神经网络分类器
net = NeuralNetClassifier(
MyModule,
max_epochs=10,
lr=0.1,
iterator_train__shuffle=True,
)
# 训练模型
net.fit(X, y)
# 预测
y_proba = net.predict_proba(X)
3. 应用案例和最佳实践
在 scikit-learn Pipeline 中使用 skorch
skorch 可以无缝集成到 scikit-learn 的 Pipeline 中,以下是一个示例:
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
pipe = Pipeline([
('scale', StandardScaler()),
('net', net),
])
pipe.fit(X, y)
y_proba = pipe.predict_proba(X)
使用 GridSearchCV 进行超参数调优
skorch 支持使用 scikit-learn 的 GridSearchCV 进行超参数调优:
from sklearn.model_selection import GridSearchCV
# 关闭 skorch 内部的训练-验证分割和详细日志记录
net.set_params(train_split=False, verbose=0)
params = {
'lr': [0.01, 0.02],
'max_epochs': [10, 20],
'module__num_units': [10, 20],
}
gs = GridSearchCV(net, params, refit=False, cv=3, scoring='accuracy', verbose=2)
gs.fit(X, y)
print("best score: {:.3f}, best params: {}".format(gs.best_score_, gs.best_params_))
4. 典型生态项目
GPyTorch 集成
skorch 支持与 GPyTorch 集成,用于高斯过程(Gaussian Processes)的训练和预测。
Hugging Face 集成
skorch 还支持与 Hugging Face 的 Transformers 库集成,用于大型语言模型的训练和微调。
通过这些集成,skorch 提供了更广泛的应用场景,使得用户可以在不同的深度学习和机器学习任务中灵活使用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134