Ragas项目中EvaluatorChain集成导致评估结果不准确的问题分析
2025-05-26 18:01:12作者:申梦珏Efrain
问题背景
在使用Ragas项目进行RAG系统评估时,开发者发现通过EvaluatorChain集成方式获得的评估结果与直接使用SingleTurnSample方式获得的结果不一致。具体表现为,当评估"法国首都是什么"这个简单问题时,EvaluatorChain给出了0分(错误结果),而直接使用SingleTurnSample则给出了正确的1分。
技术细节分析
问题根源
经过深入分析,发现问题的根源在于EvaluatorChain对输入数据格式的特殊要求。EvaluatorChain期望上下文(contexts)字段是一个包含Langchain Document对象的列表,而不是简单的字符串列表。这种设计决策可能与Langchain生态系统的深度集成有关。
数据格式差异
- 错误格式(导致0分结果):
"contexts": [
"Paris is the capital and most populous city of France."
]
- 正确格式(产生1分结果):
from langchain_core.documents import Document
"contexts": [
Document(page_content="Paris is the capital and most populous city of France.")
]
评估机制解析
Ragas的评估系统在两种不同调用方式下的工作流程有所不同:
-
EvaluatorChain方式:
- 深度集成Langchain框架
- 内部处理逻辑期望符合Langchain标准的数据结构
- 对原始字符串格式的上下文无法正确解析
-
直接SingleTurnSample方式:
- 使用Ragas原生数据格式
- 对字符串格式的上下文有更好的兼容性
- 评估逻辑更加直接
解决方案与最佳实践
即时解决方案
对于当前遇到此问题的开发者,可以采取以下两种解决方案之一:
- 转换为Document对象:
from langchain_core.documents import Document
correct_sample = {
"question": sample["question"],
"answer": sample["answer"],
"contexts": [Document(page_content=ctx) for ctx in sample["contexts"]]
}
- 使用Ragas原生评估方式:
from ragas import evaluate
from ragas.metrics import faithfulness
result = evaluate(
dataset=sample_dataset, # 需要转换为适当格式
metrics=[faithfulness],
llm=your_llm_instance
)
长期建议
值得注意的是,Ragas团队正在逐步淘汰EvaluatorChain的使用方式,转向更直接的评估接口。这种演进反映了以下几个技术考量:
- 减少对Langchain的强依赖,提高框架的独立性
- 简化评估流程,降低使用复杂度
- 提高评估结果的稳定性,减少中间转换环节
技术启示
这个问题给我们带来几个重要的技术启示:
- 框架集成时的数据格式一致性至关重要,特别是在涉及多层框架集成时
- 评估指标的敏感性需要特别注意,即使是简单的格式差异也可能导致完全不同的结果
- 文档和类型提示的重要性,特别是对于期望输入格式的明确说明
对于Ragas用户来说,理解这些底层机制有助于更准确地设计评估流程,避免在实际应用中产生误导性的评估结果。同时,关注项目的演进方向,及时调整使用方式,可以确保获得最佳的使用体验和最准确的评估结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147