Likwid在A64FX处理器上的性能计数器崩溃问题分析
问题现象
在A64FX处理器上使用Likwid性能监控工具时,当运行likwid-perfctr -C 0 -g L2 sleep 1命令时会出现内存分配错误,而运行时间稍长的命令如likwid-perfctr -C 0 -g L2 sleep 2则会在输出结果后出现双重释放错误。这两种情况都会导致程序异常终止并产生核心转储。
根本原因
经过深入分析,发现该问题的根源在于A64FX处理器的特殊核心配置。在24核版本的A64FX处理器上(芯片实际有48个节点,但只有24个处于活动状态),Linux内核没有像Intel/AMD平台那样正确地将核心ID映射为连续编号。从调试输出中可以看到,核心ID呈现不连续的跳跃模式(0,1,6,7,8,10等)。
Likwid工具在处理这种非理想的核心拓扑结构时存在缺陷,特别是在以下方面:
- 核心ID不连续导致的内存分配问题
- 拓扑结构解析时的假设条件过于理想化
- 资源释放时的双重释放风险
解决方案
针对这一问题,开发团队提出了核心ID重映射的解决方案。通过修改src/topology_proc.c文件中的核心ID分配逻辑,将原本直接读取系统提供的核心ID改为使用自增的连续编号。这一修改虽然解决了初始的内存分配问题,但揭示了Likwid在处理非标准拓扑结构时更深层次的兼容性问题。
技术启示
这一案例为我们提供了几个重要的技术启示:
-
硬件兼容性:性能监控工具需要充分考虑不同硬件架构的特殊性,特别是像A64FX这样的非x86架构处理器。
-
拓扑结构处理:工具在解析系统拓扑结构时,不能假设核心ID、插槽ID等是连续或有序的,需要具备处理各种非理想情况的能力。
-
资源管理:在复杂的性能监控场景下,需要特别注意资源的分配和释放逻辑,避免内存泄漏或双重释放等问题。
结论
Likwid工具在A64FX处理器上的这一问题凸显了性能监控工具在多架构支持方面的挑战。通过核心ID重映射等解决方案,可以部分缓解问题,但长期来看,工具需要更全面地考虑各种非标准拓扑结构情况,以提高跨平台兼容性。这一案例也为其他性能分析工具的开发提供了有价值的参考。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00