LTE:局部纹理估计器在隐式表示函数中的应用
2024-09-26 14:31:37作者:凌朦慧Richard
本教程旨在指导您了解并使用由Jaewon Lee在CVPR 2022上发表的“Local Texture Estimator for Implicit Representation Function”开源项目(GitHub Repository)。此项目实现了论文中描述的方法,专注于通过深度学习技术进行图像处理,特别是超分辨率方面。
1. 目录结构及介绍
以下是lte
项目的基本目录结构及其功能简介:
lte/
├── configs # 配置文件夹,存储训练和测试的各种配置YAML文件
│ ├── train-div2k # 训练配置文件
│ └── test # 测试配置文件
├── datasets # 数据集相关代码或配置
├── demo # 示例脚本,用于演示如何使用预训练模型
│ └── demo.py # 主要的演示程序
├── eval # 评估工具或脚本
├── models # 模型定义
├── scripts # 执行实验脚本,如训练、测试等
│ ├── test-div2k.sh # 测试脚本示例
│ └── test-benchmark.sh # 基准测试脚本
├── environment.yaml # 环境配置文件,用于conda环境创建
├── gitignore # Git忽略文件列表
├── LICENSE # 许可证文件,遵循BSD-3-Clause协议
├── README.md # 项目说明文档
├── test.py # 测试脚本
├── train.py # 训练脚本
└── utils # 工具函数库
2. 项目的启动文件介绍
训练启动
-
train.py:这是项目的核心训练脚本。通过提供相应的配置文件路径和GPU编号,您可以开始模型的训练过程。
例如,开始训练EDSR-baseline-LTE模型:
python train.py --config configs/train-div2k/train_edsr-baseline-lte.yaml --gpu 0
测试启动
-
test.py:用于验证训练好的模型的性能。
以测试EDSR-baseline-LTE为例:
python test.py --config configs/test/test-div2k-2.yaml --model save/_train_edsr-baseline-lte/epoch-last.pth --gpu 0
示例运行
-
demo.py:如果您想快速体验模型效果,可以使用这个脚本来加载预训练模型,并对特定输入图像应用模型处理。
运行示例命令:
python demo.py --input /path/to/input/image.png --model save/edsr-baseline-lte.pth --scale 2 --output output_image.png --gpu 0
3. 项目的配置文件介绍
项目中的配置文件主要位于configs
文件夹内,分为训练(train-div2k
)和测试(test
)两类。这些YAML文件定义了模型训练和评估的关键参数,包括但不限于网络架构、优化器设置、损失函数选择、数据预处理细节、以及训练和测试的具体循环设置。
-
训练配置通常包括学习率、迭代轮数、批次大小、损失函数的选择、模型架构的详细信息等。
-
测试配置则指定模型的路径、输出结果保存位置、可能的后处理步骤等。
确保在运行任何脚本之前,正确设置您的环境和修改配置文件以匹配您的硬件条件和实验需求。使用environment.yaml
文件通过Conda创建一致的开发环境是非常重要的一步,它保证了项目的兼容性和复现性。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
224
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
210
286

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
567
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0