LTE:局部纹理估计器在隐式表示函数中的应用
2024-09-26 12:33:20作者:凌朦慧Richard
本教程旨在指导您了解并使用由Jaewon Lee在CVPR 2022上发表的“Local Texture Estimator for Implicit Representation Function”开源项目(GitHub Repository)。此项目实现了论文中描述的方法,专注于通过深度学习技术进行图像处理,特别是超分辨率方面。
1. 目录结构及介绍
以下是lte项目的基本目录结构及其功能简介:
lte/
├── configs # 配置文件夹,存储训练和测试的各种配置YAML文件
│ ├── train-div2k # 训练配置文件
│ └── test # 测试配置文件
├── datasets # 数据集相关代码或配置
├── demo # 示例脚本,用于演示如何使用预训练模型
│ └── demo.py # 主要的演示程序
├── eval # 评估工具或脚本
├── models # 模型定义
├── scripts # 执行实验脚本,如训练、测试等
│ ├── test-div2k.sh # 测试脚本示例
│ └── test-benchmark.sh # 基准测试脚本
├── environment.yaml # 环境配置文件,用于conda环境创建
├── gitignore # Git忽略文件列表
├── LICENSE # 许可证文件,遵循BSD-3-Clause协议
├── README.md # 项目说明文档
├── test.py # 测试脚本
├── train.py # 训练脚本
└── utils # 工具函数库
2. 项目的启动文件介绍
训练启动
-
train.py:这是项目的核心训练脚本。通过提供相应的配置文件路径和GPU编号,您可以开始模型的训练过程。
例如,开始训练EDSR-baseline-LTE模型:
python train.py --config configs/train-div2k/train_edsr-baseline-lte.yaml --gpu 0
测试启动
-
test.py:用于验证训练好的模型的性能。
以测试EDSR-baseline-LTE为例:
python test.py --config configs/test/test-div2k-2.yaml --model save/_train_edsr-baseline-lte/epoch-last.pth --gpu 0
示例运行
-
demo.py:如果您想快速体验模型效果,可以使用这个脚本来加载预训练模型,并对特定输入图像应用模型处理。
运行示例命令:
python demo.py --input /path/to/input/image.png --model save/edsr-baseline-lte.pth --scale 2 --output output_image.png --gpu 0
3. 项目的配置文件介绍
项目中的配置文件主要位于configs文件夹内,分为训练(train-div2k)和测试(test)两类。这些YAML文件定义了模型训练和评估的关键参数,包括但不限于网络架构、优化器设置、损失函数选择、数据预处理细节、以及训练和测试的具体循环设置。
-
训练配置通常包括学习率、迭代轮数、批次大小、损失函数的选择、模型架构的详细信息等。
-
测试配置则指定模型的路径、输出结果保存位置、可能的后处理步骤等。
确保在运行任何脚本之前,正确设置您的环境和修改配置文件以匹配您的硬件条件和实验需求。使用environment.yaml文件通过Conda创建一致的开发环境是非常重要的一步,它保证了项目的兼容性和复现性。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
201
暂无简介
Dart
625
141
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
315
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
381
3.52 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
127
857