NamedPipePTH:命名管道Pass-the-Hash实战指南
项目概述
NamedPipePTH 是一个基于Pass-the-Hash技术的PoC(概念验证)项目,用于在本地通过命名管道实现用户模拟。该项目由安全研究者S3cur3Th1sSh1t开发,旨在解决特定场景下的安全需求——当已获取低权限用户的NTLM哈希,但无法通过现有工具获得该用户级别的交互式shell或C2连接时。它依赖于Windows的ImpersonateNamedPipeClient()函数,允许服务端模拟任何连接到管道的客户端。
目录结构及介绍
以下是NamedPipePTH项目的基本目录结构及其大致内容:
├── Invoke-ImpersonateUser-PTH.ps1 # 核心脚本,用于通过命名管道传递哈希执行过程模拟
├── PipeServerImpersonate.sln # Visual Studio解决方案,包含服务器端可执行程序的源代码
├── LICENSE # 许可协议文件,遵循BSD-3-Clause
├── README.md # 主要的项目说明文档
└── Resources # 资源目录,可能包括辅助脚本或编译所需的额外文件
├── PipeServerImpersonate # 服务器端代码资源目录
├── Invoke-NamedPipePTH.ps1 # 客户端连接脚本,用于与管道服务器交互
└── 其他潜在的支持文件或示例配置
项目启动文件介绍
Invoke-ImpersonateUser-PTH.ps1
这是项目的核心动力,一个PowerShell脚本,允许使用者通过指定用户名、NTLM哈希、域和命名管道名称来模拟用户。此脚本可以直接运行,无需编译,便于快速部署,支持传递参数给本地Windows二进制文件,如Powershell.exe,以便在目标用户的安全上下文中执行命令。
管道服务器组件 (PipeServerImpersonate.sln)
虽然不直接作为一个“启动文件”,但通过这个Visual Studio解决方案,你可以构建一个管道服务端的可执行文件,此可执行文件将监听命名管道连接并处理模拟逻辑。它是实现Pass-the-Hash技术中服务器端的关键部分。
配置文件介绍
NamedPipePTH项目并未明确提供传统意义上的配置文件。配置主要通过调用脚本或执行程序时传入的参数完成。例如,在使用Invoke-ImpersonateUser-PTH.ps1时,用户需手动提供必要的命令行参数来配置所需的行为,如用户凭证信息、管道名称以及可能的执行命令等。这意味着项目的“配置”更多是基于运行时参数而非独立的配置文件。
综上所述,NamedPipePTH项目通过结合PowerShell脚本和可选的C#编译产物,提供了一种灵活的方法来利用命名管道进行本地用户模拟,特别适用于渗透测试和安全研究中的特定场景。正确理解和运用这些文件与配置项,能够有效利用该项目的功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00