Monkey项目中的TextMoney模型架构解析
2025-07-08 14:34:16作者:侯霆垣
概述
Monkey项目中的TextMoney模型是基于QwenVL模型进行改进和优化的视觉语言模型。该模型在保持QwenVL基础架构的同时,针对高分辨率图像处理进行了两项关键性创新,显著提升了模型处理大尺寸输入的能力。
核心架构改进
1. 移位注意力层(Shifted Attention Layers)
TextMoney模型引入了移位注意力层机制,这一创新设计解决了传统窗口注意力在处理高分辨率图像时的局限性。通过让注意力窗口在不同层之间进行有规律的位移,模型能够建立跨窗口的连接,从而捕获更大范围的视觉上下文信息。这种设计既保持了局部窗口计算的高效性,又实现了全局信息的流动。
2. 令牌重采样器(Token Resampler)
针对高分辨率图像产生的海量视觉令牌问题,TextMoney设计了专门的令牌重采样机制:
- 重要性评估:模型首先对所有视觉令牌进行重要性评分
 - 动态采样:选择重要性排名前50%的令牌作为关键输入
 - 特征精炼:通过跨注意力机制,让这些关键令牌与全局图像特征进行交互,进一步提炼信息
 
这种设计显著减少了计算量,同时保留了图像中最具信息量的视觉特征。
与原始QwenVL的差异
虽然TextMoney沿用了QwenVL的基础架构,但在以下方面做出了重要改进:
- 输入分辨率支持:通过上述创新,模型能够处理更高分辨率的输入图像
 - 计算效率优化:令牌重采样机制有效控制了计算复杂度
 - 长距离依赖建模:移位注意力增强了模型对图像全局结构的理解能力
 
技术实现细节
TextMoney的实现包含两个核心组件:
- 图像重采样器:使用可学习的查询向量作为输入,从原始图像特征中提取关键信息
 - 令牌重采样器:基于注意力机制动态选择最具代表性的视觉令牌,实现特征压缩
 
这种分层处理策略使得模型能够高效处理高分辨率输入,同时保持对细粒度视觉细节的捕捉能力。
应用价值
TextMoney的架构改进使其在以下场景中表现突出:
- 文档图像理解:能够处理包含密集文字的大尺寸文档图像
 - 细粒度视觉问答:对图像中的细节问题回答更加准确
 - 跨模态检索:提升了图文匹配的精度
 
这些创新使Monkey项目在视觉语言模型领域取得了重要进展,特别是在处理高分辨率图像任务方面展现出明显优势。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445