AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.25
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署深度学习工作负载。这些容器经过优化,可在AWS基础设施上高效运行,支持CPU和GPU实例类型。
本次发布的v1.25版本主要针对基于Graviton处理器的EC2实例,提供了PyTorch 2.4.0的推理容器镜像。Graviton是AWS自主研发的基于ARM架构的处理器,相比传统x86架构处理器,在性价比方面具有显著优势。
关键特性与技术细节
该容器镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境,专为CPU推理场景优化。镜像中包含了PyTorch生态系统的完整组件:
-
核心框架:PyTorch 2.4.0 CPU版本,这是PyTorch的最新稳定版本之一,包含了多项性能优化和新特性。
-
配套工具:
- TorchServe 0.12.0:用于模型部署和服务化的工具
- Torch Model Archiver 0.12.0:模型打包工具
- TorchVision 0.19.0:计算机视觉相关库
- TorchAudio 2.4.0:音频处理相关库
-
科学计算支持:
- NumPy 1.26.4:基础数值计算库
- SciPy 1.14.1:科学计算扩展库
- OpenCV 4.10.0.84:计算机视觉库
-
开发工具:
- Cython 3.0.11:Python C扩展工具
- Ninja 1.11.1.1:构建系统
- FileLock 3.16.1:文件锁工具
-
AWS集成:
- AWS CLI 1.35.20:AWS命令行工具
- Boto3 1.35.54:AWS Python SDK
- Botocore 1.35.54:Boto3核心库
系统依赖与优化
镜像中包含了必要的系统依赖库,特别是针对ARM64架构的优化:
- GCC相关库(libgcc-10-dev、libgcc-11-dev)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev)
- 开发工具如Emacs(可选)
这些依赖项确保了PyTorch在Graviton处理器上的最佳性能表现。AWS团队已经对这些组件进行了深度优化,使其能够充分利用ARM架构的特性。
使用场景
这个容器镜像特别适合以下场景:
-
成本敏感型推理应用:Graviton实例通常比同级别x86实例更具价格优势,适合大规模部署的推理服务。
-
边缘计算:ARM架构的能效优势使其成为边缘设备的理想选择。
-
持续集成/持续部署(CI/CD):预构建的容器可以简化模型测试和部署流程。
-
模型服务化:内置的TorchServe工具支持将训练好的模型快速部署为RESTful服务。
总结
AWS Deep Learning Containers的这次更新为使用PyTorch进行推理的用户提供了更多选择,特别是在考虑成本效益的场景下。基于Graviton处理器的容器镜像不仅降低了运营成本,还保持了良好的性能表现。对于已经在使用PyTorch生态系统的团队,可以无缝迁移到这一解决方案,享受ARM架构带来的优势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00