Apache DataFusion中count(*)函数在自定义ContextProvider中的回归问题分析
在Apache DataFusion最新发布的46.0版本中,对count(*)聚合函数的处理逻辑进行了架构调整,这一改动导致了一个值得注意的回归问题。本文将深入分析该问题的技术背景、影响范围以及解决方案。
问题背景
在DataFusion的早期版本中,count()这类通配符聚合函数是通过CountWildCard分析器规则进行处理的。这个规则专门负责将count()这样的语法展开成具体的表达式。然而在46.0版本中,这个处理逻辑被迁移到了ExprPlanner中,作为聚合函数规划的一部分。
架构变更带来的影响
新的实现依赖于ContextProvider能够获取表达式规划器(ExprPlanner)。DataFusion内置的SessionContextProvider能够正常工作,因为它可以通过SessionState获取到所需的表达式规划器。然而,问题出现在用户自定义的ContextProvider实现上。
关键问题在于:
- SessionState虽然存储了表达式规划器,但没有提供公开的访问接口
- 用户自定义的ContextProvider无法直接访问这些规划器
- 目前唯一的解决方式是让用户实现FunctionRegistry trait,但这增加了使用复杂度
技术细节分析
在DataFusion的架构中,表达式规划器负责将SQL表达式转换为可执行的物理计划。对于count(*)这样的特殊语法,规划器需要将其转换为具体的聚合操作。46.0版本的改动虽然简化了内部架构,但意外地破坏了用户扩展点的兼容性。
解决方案讨论
经过社区讨论,提出了两种可能的解决方案:
-
在SessionState上添加expr_planners方法
- 优点:改动最小,直接解决问题
- 缺点:仅限于core crate内使用
-
在Session trait上添加expr_planners方法
- 优点:更广泛的访问性,可在catalog等更多场景使用
- 缺点:需要更大的架构改动
最终决定采用第一种方案,即在SessionState上添加访问方法。这种方案能够立即解决问题,同时保持架构的简洁性。如果需要更广泛的访问性,未来可以很容易地扩展到Session trait上。
对用户的影响
这一改动主要影响以下场景的用户:
- 自定义实现了ContextProvider的用户
- 需要扩展或修改默认表达式规划行为的用户
- 在DataFusion基础上构建自定义查询引擎的用户
对于大多数只使用DataFusion默认功能的用户,这一改动不会产生任何影响。
总结
DataFusion 46.0版本对count(*)处理的架构改进虽然带来了更好的内部一致性,但也意外地影响了扩展性。通过为SessionState添加表达式规划器的访问方法,可以优雅地解决这一问题,同时保持架构的灵活性。这一案例也提醒我们,在进行架构重构时,需要特别注意对扩展点兼容性的影响。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00