Apache DataFusion中聚合函数表达式显示格式的优化方案
背景介绍
在Apache DataFusion项目中,查询执行计划的可读性对于开发者理解和调试查询至关重要。当前版本中,AggregateExec算子的输出显示存在冗余信息问题,特别是聚合函数表达式的显示格式不够简洁明了。
问题分析
在DataFusion的执行计划可视化输出中,AggregateExec算子当前显示的聚合函数表达式包含了过多细节。例如,一个简单的计数聚合会显示为count(Int64(1)),其中Int64(1)这样的类型信息对于理解执行计划的核心逻辑并非必要,反而增加了视觉负担。
通过代码分析发现,这个问题源于create_aggregate_expr_and_maybe_filter函数中Expr的SchemaDisplay实现方式。当前的显示逻辑为所有表达式类型生成了详细的调试信息,但对于用户理解执行计划而言,这些细节往往是不必要的。
解决方案设计
针对这个问题,我们提出了一套系统化的改进方案:
-
扩展表达式结构:在
AggregateFunctionExpr结构中新增sql_name字段,专门用于存储更符合SQL习惯的显示名称。 -
引入新的格式化方法:为
Expr特征(trait)添加fmt_sql_name()方法,类似于现有的schema_name()方法。对于AggregateFunction类型,我们将重写这个方法以生成更简洁的SQL风格名称。 -
修改执行计划显示逻辑:调整
AggregateExec的fmt_as实现,使其使用新的sql_name而非原来的name字段来显示聚合表达式。
技术实现细节
在具体实现上,我们需要:
- 修改
AggregateFunctionExpr结构体定义,增加sql_name字段:
pub struct AggregateFunctionExpr {
// 原有字段...
sql_name: String,
}
- 为
Expr特征添加新的格式化方法:
pub trait Expr {
// 原有方法...
fn fmt_sql_name(&self) -> String;
}
- 在
AggregateFunction的实现中提供简洁的SQL风格名称:
impl Expr for AggregateFunction {
fn fmt_sql_name(&self) -> String {
format!("{}({})", self.fun, self.args.iter().map(|arg| arg.sql_name()).join(", "))
}
}
- 最后更新
AggregateExec的显示逻辑,使用新的简洁格式。
预期效果
经过这些修改后,执行计划的显示将更加简洁直观。例如,原来的:
┌─────────────┴─────────────┐
│ AggregateExec │
│ -------------------- │
│ aggr: count(Int64(1)) │
│ mode: Final │
└─────────────┬─────────────┘
将变为更简洁的:
┌─────────────┴─────────────┐
│ AggregateExec │
│ -------------------- │
│ aggr: count(1) │
│ mode: Final │
└─────────────┬─────────────┘
总结
这个优化方案通过引入专门的SQL风格显示名称,显著提高了DataFusion执行计划的可读性。这种改进不仅使开发者更容易理解复杂的查询计划,也保持了与标准SQL语法的一致性,降低了学习成本。同时,这种设计保持了良好的扩展性,未来可以轻松支持更多表达式类型的定制化显示。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00