Apache DataFusion中聚合函数表达式显示格式的优化方案
背景介绍
在Apache DataFusion项目中,查询执行计划的可读性对于开发者理解和调试查询至关重要。当前版本中,AggregateExec算子的输出显示存在冗余信息问题,特别是聚合函数表达式的显示格式不够简洁明了。
问题分析
在DataFusion的执行计划可视化输出中,AggregateExec算子当前显示的聚合函数表达式包含了过多细节。例如,一个简单的计数聚合会显示为count(Int64(1)),其中Int64(1)这样的类型信息对于理解执行计划的核心逻辑并非必要,反而增加了视觉负担。
通过代码分析发现,这个问题源于create_aggregate_expr_and_maybe_filter函数中Expr的SchemaDisplay实现方式。当前的显示逻辑为所有表达式类型生成了详细的调试信息,但对于用户理解执行计划而言,这些细节往往是不必要的。
解决方案设计
针对这个问题,我们提出了一套系统化的改进方案:
- 
扩展表达式结构:在
AggregateFunctionExpr结构中新增sql_name字段,专门用于存储更符合SQL习惯的显示名称。 - 
引入新的格式化方法:为
Expr特征(trait)添加fmt_sql_name()方法,类似于现有的schema_name()方法。对于AggregateFunction类型,我们将重写这个方法以生成更简洁的SQL风格名称。 - 
修改执行计划显示逻辑:调整
AggregateExec的fmt_as实现,使其使用新的sql_name而非原来的name字段来显示聚合表达式。 
技术实现细节
在具体实现上,我们需要:
- 修改
AggregateFunctionExpr结构体定义,增加sql_name字段: 
pub struct AggregateFunctionExpr {
    // 原有字段...
    sql_name: String,
}
- 为
Expr特征添加新的格式化方法: 
pub trait Expr {
    // 原有方法...
    fn fmt_sql_name(&self) -> String;
}
- 在
AggregateFunction的实现中提供简洁的SQL风格名称: 
impl Expr for AggregateFunction {
    fn fmt_sql_name(&self) -> String {
        format!("{}({})", self.fun, self.args.iter().map(|arg| arg.sql_name()).join(", "))
    }
}
- 最后更新
AggregateExec的显示逻辑,使用新的简洁格式。 
预期效果
经过这些修改后,执行计划的显示将更加简洁直观。例如,原来的:
┌─────────────┴─────────────┐
│       AggregateExec       │
│    --------------------   │
│   aggr: count(Int64(1))   │
│        mode: Final        │
└─────────────┬─────────────┘
将变为更简洁的:
┌─────────────┴─────────────┐
│       AggregateExec       │
│    --------------------   │
│      aggr: count(1)       │
│        mode: Final        │
└─────────────┬─────────────┘
总结
这个优化方案通过引入专门的SQL风格显示名称,显著提高了DataFusion执行计划的可读性。这种改进不仅使开发者更容易理解复杂的查询计划,也保持了与标准SQL语法的一致性,降低了学习成本。同时,这种设计保持了良好的扩展性,未来可以轻松支持更多表达式类型的定制化显示。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00