Apache DataFusion中聚合函数表达式显示格式的优化方案
背景介绍
在Apache DataFusion项目中,查询执行计划的可读性对于开发者理解和调试查询至关重要。当前版本中,AggregateExec算子的输出显示存在冗余信息问题,特别是聚合函数表达式的显示格式不够简洁明了。
问题分析
在DataFusion的执行计划可视化输出中,AggregateExec算子当前显示的聚合函数表达式包含了过多细节。例如,一个简单的计数聚合会显示为count(Int64(1)),其中Int64(1)这样的类型信息对于理解执行计划的核心逻辑并非必要,反而增加了视觉负担。
通过代码分析发现,这个问题源于create_aggregate_expr_and_maybe_filter函数中Expr的SchemaDisplay实现方式。当前的显示逻辑为所有表达式类型生成了详细的调试信息,但对于用户理解执行计划而言,这些细节往往是不必要的。
解决方案设计
针对这个问题,我们提出了一套系统化的改进方案:
-
扩展表达式结构:在
AggregateFunctionExpr结构中新增sql_name字段,专门用于存储更符合SQL习惯的显示名称。 -
引入新的格式化方法:为
Expr特征(trait)添加fmt_sql_name()方法,类似于现有的schema_name()方法。对于AggregateFunction类型,我们将重写这个方法以生成更简洁的SQL风格名称。 -
修改执行计划显示逻辑:调整
AggregateExec的fmt_as实现,使其使用新的sql_name而非原来的name字段来显示聚合表达式。
技术实现细节
在具体实现上,我们需要:
- 修改
AggregateFunctionExpr结构体定义,增加sql_name字段:
pub struct AggregateFunctionExpr {
// 原有字段...
sql_name: String,
}
- 为
Expr特征添加新的格式化方法:
pub trait Expr {
// 原有方法...
fn fmt_sql_name(&self) -> String;
}
- 在
AggregateFunction的实现中提供简洁的SQL风格名称:
impl Expr for AggregateFunction {
fn fmt_sql_name(&self) -> String {
format!("{}({})", self.fun, self.args.iter().map(|arg| arg.sql_name()).join(", "))
}
}
- 最后更新
AggregateExec的显示逻辑,使用新的简洁格式。
预期效果
经过这些修改后,执行计划的显示将更加简洁直观。例如,原来的:
┌─────────────┴─────────────┐
│ AggregateExec │
│ -------------------- │
│ aggr: count(Int64(1)) │
│ mode: Final │
└─────────────┬─────────────┘
将变为更简洁的:
┌─────────────┴─────────────┐
│ AggregateExec │
│ -------------------- │
│ aggr: count(1) │
│ mode: Final │
└─────────────┬─────────────┘
总结
这个优化方案通过引入专门的SQL风格显示名称,显著提高了DataFusion执行计划的可读性。这种改进不仅使开发者更容易理解复杂的查询计划,也保持了与标准SQL语法的一致性,降低了学习成本。同时,这种设计保持了良好的扩展性,未来可以轻松支持更多表达式类型的定制化显示。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00