Qiskit中ObservablesArray基于SparseObservable的重构解析
背景与动机
在量子计算框架Qiskit中,ObservablesArray是一个用于存储量子可观测量的重要数据结构。传统实现中,每个可观测量的内部表示形式是从Pauli字符串到系数的映射。随着Qiskit功能的扩展,开发团队决定将其底层实现重构为基于SparseObservable类型,这一改变旨在提升代码的模块化程度和计算效率。
技术实现细节
核心重构内容
重构工作的核心是将ObservablesArray的内部表示从简单的映射关系升级为SparseObservable对象。这一变更涉及以下几个关键技术点:
-
类型系统扩展:首先需要扩展
ObservableLike接口,使其能够兼容SparseObservable类型。这为后续的整合工作奠定了基础。 -
数据转换处理:新增的
coerce_observable方法负责确保ObservablesArrayLike._array中的所有条目都是SparseObservable类型。该方法还会自动调用SparseObservable.simplify来简化每个可观测量的表示,并在发现包含投影操作且allow_projections为False时抛出错误。 -
接口兼容性:为了保持向后兼容性,原有的
__array__、__getitem__和tolist方法仍然返回映射关系,但支持的字符集扩展到了IXYZ01+-lr,覆盖了更广泛的量子操作表示需求。
新增功能特性
重构过程中还引入了几个重要的新功能:
-
稀疏可观测量的直接访问:新增了
get_sparse_observable(index)和sparse_observable_array方法,允许开发者直接获取稀疏可观测量的表示,而不必经过映射转换。 -
布局应用支持:新增的
apply_layout方法能够对数组中的每个可观测值应用布局转换,这一功能在量子电路优化和映射过程中尤为重要。
设计决策与考量
在重构过程中,开发团队做出了几个关键决策:
-
投影操作的处理:最初计划引入
allow_projections标志来控制是否允许投影操作,但在深入分析后发现现有的错误处理机制已经足够,因此移除了这一设计。 -
向后兼容性:确保
__repr__方法返回与之前相同的字符串表示,避免影响现有代码的日志和调试输出。 -
性能优化:通过使用
SparseObservable的简化操作,可以在存储和计算过程中获得更好的性能表现。
未来发展方向
虽然本次重构已经完成了大部分工作,但仍有一些后续计划:
-
投影操作的全面支持:计划在未来版本中让
BackendEstimatorV2和StatevectorEstimator等组件全面支持投影操作,这将作为一个独立的任务进行开发。 -
性能基准测试:需要对新实现的性能进行全面评估,确保在实际应用中能够带来预期的效率提升。
总结
Qiskit中ObservablesArray基于SparseObservable的重构是一项重要的内部改进,它不仅提升了代码的模块化程度,还为未来的功能扩展奠定了基础。通过精心设计的接口和谨慎的兼容性处理,这一变更在增强功能的同时,最大限度地减少了对现有代码的影响。这一改进展示了Qiskit项目在保持稳定性的同时不断演进的技术路线。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00