Qiskit中ObservablesArray基于SparseObservable的重构解析
背景与动机
在量子计算框架Qiskit中,ObservablesArray
是一个用于存储量子可观测量的重要数据结构。传统实现中,每个可观测量的内部表示形式是从Pauli字符串到系数的映射。随着Qiskit功能的扩展,开发团队决定将其底层实现重构为基于SparseObservable
类型,这一改变旨在提升代码的模块化程度和计算效率。
技术实现细节
核心重构内容
重构工作的核心是将ObservablesArray
的内部表示从简单的映射关系升级为SparseObservable
对象。这一变更涉及以下几个关键技术点:
-
类型系统扩展:首先需要扩展
ObservableLike
接口,使其能够兼容SparseObservable
类型。这为后续的整合工作奠定了基础。 -
数据转换处理:新增的
coerce_observable
方法负责确保ObservablesArrayLike._array
中的所有条目都是SparseObservable
类型。该方法还会自动调用SparseObservable.simplify
来简化每个可观测量的表示,并在发现包含投影操作且allow_projections
为False时抛出错误。 -
接口兼容性:为了保持向后兼容性,原有的
__array__
、__getitem__
和tolist
方法仍然返回映射关系,但支持的字符集扩展到了IXYZ01+-lr
,覆盖了更广泛的量子操作表示需求。
新增功能特性
重构过程中还引入了几个重要的新功能:
-
稀疏可观测量的直接访问:新增了
get_sparse_observable(index)
和sparse_observable_array
方法,允许开发者直接获取稀疏可观测量的表示,而不必经过映射转换。 -
布局应用支持:新增的
apply_layout
方法能够对数组中的每个可观测值应用布局转换,这一功能在量子电路优化和映射过程中尤为重要。
设计决策与考量
在重构过程中,开发团队做出了几个关键决策:
-
投影操作的处理:最初计划引入
allow_projections
标志来控制是否允许投影操作,但在深入分析后发现现有的错误处理机制已经足够,因此移除了这一设计。 -
向后兼容性:确保
__repr__
方法返回与之前相同的字符串表示,避免影响现有代码的日志和调试输出。 -
性能优化:通过使用
SparseObservable
的简化操作,可以在存储和计算过程中获得更好的性能表现。
未来发展方向
虽然本次重构已经完成了大部分工作,但仍有一些后续计划:
-
投影操作的全面支持:计划在未来版本中让
BackendEstimatorV2
和StatevectorEstimator
等组件全面支持投影操作,这将作为一个独立的任务进行开发。 -
性能基准测试:需要对新实现的性能进行全面评估,确保在实际应用中能够带来预期的效率提升。
总结
Qiskit中ObservablesArray
基于SparseObservable
的重构是一项重要的内部改进,它不仅提升了代码的模块化程度,还为未来的功能扩展奠定了基础。通过精心设计的接口和谨慎的兼容性处理,这一变更在增强功能的同时,最大限度地减少了对现有代码的影响。这一改进展示了Qiskit项目在保持稳定性的同时不断演进的技术路线。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









