BloodHound项目中的Self ACL权限解析与修复
在Active Directory安全评估工具BloodHound及其数据收集组件SharpHound中,近期发现并修复了一个关于Self ACL(访问控制列表)权限的重要问题。这个问题涉及到用户对自身权限的特殊控制场景,对于Active Directory安全评估具有重要意义。
问题背景
在Active Directory环境中,存在一种特殊的权限配置:允许用户将自己添加到特定安全组中。这种权限通过设置特殊的Self ACL实现,其中包含以下关键属性:
- ActiveDirectoryRights: Self
- AccessMask: 8 (对应WRITE_DAC权限)
- SecurityIdentifier: 指向用户自身的SID
这种配置在实际环境中相当常见,特别是在需要用户自助管理组成员身份的业务场景中。然而,在BloodHound 6.4.0和SharpHound v2.5.13版本中,这种权限关系无法被正确识别和展示。
技术细节分析
从技术实现角度看,这个问题源于SharpHound数据收集器对特定类型ACE(访问控制项)的处理逻辑。具体表现为:
-
当PowerView.ps1的Get-DomainObjectACL命令能够正确识别这种Self ACL时,SharpHound却无法将其转化为BloodHound可识别的边关系。
-
这种权限的特殊性在于它结合了Self权限和WRITE_DAC访问掩码,形成了一个独特的权限组合,允许主体用户修改自己在目标组中的成员身份。
-
从安全评估角度,这种权限关系非常重要,因为它实质上提供了权限提升的潜在路径 - 用户可以通过将自己添加到高权限组来提升自己的访问级别。
影响范围
这个bug影响了BloodHound对Active Directory权限关系的完整展示,可能导致安全评估人员遗漏以下重要信息:
- 用户自助加入组的权限路径
- 潜在的权限提升路径
- 访问控制矩阵中的关键边关系
解决方案
该问题已在SharpHound v2.6.7版本中得到修复。新版本改进了ACL解析逻辑,能够正确识别和处理包含Self权限的特殊ACE。升级后,BloodHound现在可以:
- 正确展示用户到组的Self ACL边关系
- 在攻击路径分析中考虑这种特殊权限
- 提供更完整的Active Directory权限图谱
最佳实践建议
对于Active Directory安全评估人员,建议:
- 及时升级到SharpHound v2.6.7或更高版本
- 在评估中特别注意Self ACL权限配置
- 定期审查允许用户自助管理组成员身份的组策略
- 将这种特殊权限纳入常规权限审计范围
这个修复显著提升了BloodHound在复杂Active Directory环境中的分析能力,使安全团队能够更全面地评估和防护权限提升风险。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00