Seurat中使用FindMarkers进行伪批量差异表达分析指南
2025-07-01 02:07:24作者:昌雅子Ethen
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的强大工具包。当研究人员需要对两个样本(如野生型WT和基因敲除KO)进行整体比较时,可以采用"伪批量"(pseudo-bulk)分析方法。本文将详细介绍如何在Seurat中正确实施这种分析策略。
伪批量分析的基本概念
伪批量分析是一种将单细胞数据聚合模拟成批量RNA-seq数据的方法。其核心思想是将多个细胞的表达量合并,创建一个"伪样本",然后使用传统的批量RNA-seq差异表达分析方法进行比较。
这种方法特别适用于以下场景:
- 比较两个处理组(如WT vs KO)的整体转录组差异
- 当样本间细胞组成差异不大时
- 需要提高检测低表达基因差异的统计功效
Seurat中的实现方法
在Seurat中,可以使用FindMarkers函数进行伪批量差异表达分析,具体步骤如下:
-
数据准备:确保已完成标准预处理流程,包括质量控制、归一化和聚类
-
创建伪批量数据:
- 将每个样本的所有细胞视为一个组
- 可以按样本ID对细胞进行分组
-
差异表达分析:
# 假设seurat_obj是已处理的对象,且包含样本信息在"sample"列中 markers <- FindMarkers(seurat_obj, ident.1 = "KO", ident.2 = "WT", group.by = "sample")
方法选择与注意事项
Seurat默认使用Wilcoxon秩和检验进行差异表达分析,这在伪批量分析中也是可行的。但需要注意:
-
统计方法考量:
- Wilcoxon检验是非参数方法,对分布假设较少
- 但对低表达基因的检测能力可能不足
- 可能无法有效处理批次效应
-
替代方案:
- 考虑使用专门的批量RNA-seq分析工具如DESeq2或edgeR
- 这些工具提供了更复杂的模型设计能力
- 能更好地处理离散度和批次效应
最佳实践建议
-
数据探索:先检查样本间细胞组成是否相似,若差异较大可能需要调整
-
方法验证:建议同时尝试Seurat内置方法和专业批量分析工具,比较结果一致性
-
结果解释:注意伪批量分析检测到的是样本间整体差异,可能掩盖细胞类型特异性变化
-
质量控制:确保比较的两个组有足够的细胞数量,避免统计功效不足
结论
在Seurat中使用FindMarkers进行伪批量差异表达分析是一种简便有效的方法,特别适合初步探索样本间整体转录组差异。但对于更复杂的实验设计或需要更高统计严谨性的分析,建议结合专业批量RNA-seq分析工具。无论采用哪种方法,理解其假设条件和局限性对正确解释结果都至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1