PocketFlow-Typescript中的MapReduce设计模式解析
2025-06-19 03:06:55作者:裘晴惠Vivianne
什么是MapReduce模式
MapReduce是一种经典的分布式计算模式,最初由Google提出,用于处理大规模数据集。在PocketFlow-Typescript项目中,MapReduce被实现为一种设计模式,用于处理以下两种情况:
- 输入数据量大的场景(如需要处理多个文件)
- 输出数据量大的场景(如需要填写多种表单)
这种模式的核心思想是将复杂任务分解为更小的、理想情况下可以独立执行的子任务。
MapReduce工作原理
MapReduce模式包含两个主要阶段:
- Map阶段:使用BatchNode将大任务分解为多个小任务
- Reduce阶段:将Map阶段的结果进行聚合处理
输入数据 → Map(分解) → 中间结果 → Reduce(聚合) → 最终结果
实际应用示例:文档摘要系统
让我们通过一个文档摘要系统的例子来理解PocketFlow-Typescript中MapReduce的实现。
场景描述
假设我们有一组文档文件,需要完成以下任务:
- 为每个文件生成单独的摘要
- 将所有文件的摘要合并成一个综合摘要
代码实现解析
1. 定义共享存储结构
首先定义存储中间结果和最终结果的数据结构:
type SharedStorage = {
files?: Record<string, string>; // 原始文件集合
file_summaries?: Record<string, string>; // 各文件摘要
all_files_summary?: string; // 综合摘要
};
2. Map阶段:单个文件摘要生成
使用BatchNode实现Map阶段,为每个文件生成摘要:
class SummarizeAllFiles extends BatchNode<SharedStorage> {
// 准备阶段:将文件集合转换为[文件名, 内容]的数组
async prep(shared: SharedStorage): Promise<[string, string][]> {
return Object.entries(shared.files || {});
}
// 执行阶段:为单个文件生成摘要
async exec([filename, content]: [string, string]): Promise<[string, string]> {
const summary = await callLLM(`Summarize the following file:\n${content}`);
return [filename, summary];
}
// 后处理:存储所有文件的摘要
async post(shared: SharedStorage, _: [string, string][], summaries: [string, string][]): Promise<string> {
shared.file_summaries = Object.fromEntries(summaries);
return "summarized";
}
}
3. Reduce阶段:摘要合并
使用Node实现Reduce阶段,合并所有文件摘要:
class CombineSummaries extends Node<SharedStorage> {
// 准备阶段:获取所有文件的摘要
async prep(shared: SharedStorage): Promise<Record<string, string>> {
return shared.file_summaries || {};
}
// 执行阶段:合并摘要
async exec(summaries: Record<string, string>): Promise<string> {
const text_list = Object.entries(summaries).map(
([fname, summ]) => `${fname} summary:\n${summ}\n`
);
return await callLLM(
`Combine these file summaries into one final summary:\n${text_list.join("\n---\n")}`
);
}
// 后处理:存储最终的综合摘要
async post(shared: SharedStorage, _: Record<string, string>, finalSummary: string): Promise<string> {
shared.all_files_summary = finalSummary;
return "combined";
}
}
4. 构建并执行流程
将两个节点连接起来并执行:
const batchNode = new SummarizeAllFiles();
const combineNode = new CombineSummaries();
batchNode.on("summarized", combineNode);
const flow = new Flow(batchNode);
flow.run({
files: {
"file1.txt": "Alice was beginning to get very tired of sitting by her sister...",
"file2.txt": "Some other interesting text ...",
},
});
性能优化建议
上述示例是顺序执行的,如果需要提高处理速度,可以使用ParallelBatchNode
替代BatchNode
实现并行处理。这在处理大量文件时能显著提升性能。
MapReduce模式的优势
- 可扩展性:可以轻松处理数据量的增长
- 容错性:单个任务的失败不会影响整个流程
- 灵活性:适用于各种数据处理场景
- 清晰性:代码结构清晰,易于理解和维护
适用场景
PocketFlow-Typescript中的MapReduce模式特别适合以下场景:
- 批量数据处理
- 日志分析
- 数据转换
- 分布式计算任务
- 任何可以分解为独立子任务的工作流
通过这种模式,开发者可以构建高效、可维护的数据处理流程,充分利用系统资源,提高整体处理效率。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399