PocketFlow-Typescript中的MapReduce设计模式解析
2025-06-19 12:08:49作者:裘晴惠Vivianne
什么是MapReduce模式
MapReduce是一种经典的分布式计算模式,最初由Google提出,用于处理大规模数据集。在PocketFlow-Typescript项目中,MapReduce被实现为一种设计模式,用于处理以下两种情况:
- 输入数据量大的场景(如需要处理多个文件)
- 输出数据量大的场景(如需要填写多种表单)
这种模式的核心思想是将复杂任务分解为更小的、理想情况下可以独立执行的子任务。
MapReduce工作原理
MapReduce模式包含两个主要阶段:
- Map阶段:使用BatchNode将大任务分解为多个小任务
- Reduce阶段:将Map阶段的结果进行聚合处理
输入数据 → Map(分解) → 中间结果 → Reduce(聚合) → 最终结果
实际应用示例:文档摘要系统
让我们通过一个文档摘要系统的例子来理解PocketFlow-Typescript中MapReduce的实现。
场景描述
假设我们有一组文档文件,需要完成以下任务:
- 为每个文件生成单独的摘要
- 将所有文件的摘要合并成一个综合摘要
代码实现解析
1. 定义共享存储结构
首先定义存储中间结果和最终结果的数据结构:
type SharedStorage = {
files?: Record<string, string>; // 原始文件集合
file_summaries?: Record<string, string>; // 各文件摘要
all_files_summary?: string; // 综合摘要
};
2. Map阶段:单个文件摘要生成
使用BatchNode实现Map阶段,为每个文件生成摘要:
class SummarizeAllFiles extends BatchNode<SharedStorage> {
// 准备阶段:将文件集合转换为[文件名, 内容]的数组
async prep(shared: SharedStorage): Promise<[string, string][]> {
return Object.entries(shared.files || {});
}
// 执行阶段:为单个文件生成摘要
async exec([filename, content]: [string, string]): Promise<[string, string]> {
const summary = await callLLM(`Summarize the following file:\n${content}`);
return [filename, summary];
}
// 后处理:存储所有文件的摘要
async post(shared: SharedStorage, _: [string, string][], summaries: [string, string][]): Promise<string> {
shared.file_summaries = Object.fromEntries(summaries);
return "summarized";
}
}
3. Reduce阶段:摘要合并
使用Node实现Reduce阶段,合并所有文件摘要:
class CombineSummaries extends Node<SharedStorage> {
// 准备阶段:获取所有文件的摘要
async prep(shared: SharedStorage): Promise<Record<string, string>> {
return shared.file_summaries || {};
}
// 执行阶段:合并摘要
async exec(summaries: Record<string, string>): Promise<string> {
const text_list = Object.entries(summaries).map(
([fname, summ]) => `${fname} summary:\n${summ}\n`
);
return await callLLM(
`Combine these file summaries into one final summary:\n${text_list.join("\n---\n")}`
);
}
// 后处理:存储最终的综合摘要
async post(shared: SharedStorage, _: Record<string, string>, finalSummary: string): Promise<string> {
shared.all_files_summary = finalSummary;
return "combined";
}
}
4. 构建并执行流程
将两个节点连接起来并执行:
const batchNode = new SummarizeAllFiles();
const combineNode = new CombineSummaries();
batchNode.on("summarized", combineNode);
const flow = new Flow(batchNode);
flow.run({
files: {
"file1.txt": "Alice was beginning to get very tired of sitting by her sister...",
"file2.txt": "Some other interesting text ...",
},
});
性能优化建议
上述示例是顺序执行的,如果需要提高处理速度,可以使用ParallelBatchNode
替代BatchNode
实现并行处理。这在处理大量文件时能显著提升性能。
MapReduce模式的优势
- 可扩展性:可以轻松处理数据量的增长
- 容错性:单个任务的失败不会影响整个流程
- 灵活性:适用于各种数据处理场景
- 清晰性:代码结构清晰,易于理解和维护
适用场景
PocketFlow-Typescript中的MapReduce模式特别适合以下场景:
- 批量数据处理
- 日志分析
- 数据转换
- 分布式计算任务
- 任何可以分解为独立子任务的工作流
通过这种模式,开发者可以构建高效、可维护的数据处理流程,充分利用系统资源,提高整体处理效率。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K