🌟 开源宝藏 - 人类检测器: 利用HOG-线性SVM进行人体识别的Python实现
2024-06-18 13:50:40作者:盛欣凯Ernestine
在计算机视觉领域中,人类检测(Human Detection)是一项基础且关键的技术,广泛应用于安防监控、人机交互、智能交通等场景。今天,我要向大家推荐一款出色的开源项目——人类检测器,它基于Histogram of Oriented Gradients (HOG) 特征和线性支持向量机 (Linear SVM),能够高效准确地从图像中识别并定位人类。
🔍 项目介绍
该项目由BUPTLdy开发并开源于GitHub上,旨在提供一个简单易用的人体检测框架,适用于学术研究与实际应用。通过集成多个强大的库如OpenCV, scikit-learn 和 scikit-image,以及利用HOG特征的强大描述力,结合高效的线性SVM分类算法,该系统能够在复杂环境中有效检测到人的存在。
🛠️ 技术分析
核心技术点:
- HOG特征抽取:HOG是一种用于物体检测的特征描述子,能够捕捉图像中的边缘和纹理信息。
- 线性SVM分类:线性支持向量机是一种监督学习模型,特别适用于二分类问题,能为每个类别的样本找到最佳的超平面分界。
应用流程简述:
- 图像预处理:包括调整尺寸、灰度化等操作,准备输入数据。
- 特征提取:使用HOG算法对每张图像的滑动窗口进行特征描述。
- 分类预测:通过训练好的SVM模型对特征进行分类,判断是否属于“人”类别。
- 结果后处理:采用Non-Maximum Suppression(NMS)减少重复框,提高检测精度。
💡 应用场景
- 安防监控:实时监测区域内的人员活动,自动报警异常行为。
- 人机互动:游戏或虚拟现实应用程序中的人物追踪与识别。
- 智能零售:店铺内顾客行为分析,优化布局和服务策略。
- 自动驾驶:道路行人检测,辅助驾驶决策系统。
⚒️ 项目特点
- 高度可定制:用户可以根据不同场景自定义参数设置,调整HOG特征的计算方式与SVM训练策略。
- 快速部署:简洁的安装步骤与直观的API设计,便于快速集成至现有系统架构中。
- 高精确率:在多种测试环境下均表现出色,尤其对于遮挡、光线变化等复杂条件下的稳定性令人印象深刻。
🚀 快来尝试这个强大而灵活的人类检测工具吧!无论是作为科研工作者寻找前沿工具,还是开发人员寻求有效的解决方案,人类检测器都是您不可多得的选择。让我们一起探索计算机视觉的魅力,推动智能科技的发展!
如果你感兴趣,不要忘记访问官方GitHub页面获取最新代码和文档。记得给项目星标以示支持哦!✨
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
194
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143