elasticsearch-analysis-ansj 的安装和配置教程
1. 项目基础介绍和主要编程语言
elasticsearch-analysis-ansj 是一个开源的中文分词插件,用于Elasticsearch搜索引擎。该插件基于ansj分词器,可以提供强大的中文文本分析功能。主要编程语言为Java,它是Elasticsearch的一个扩展,能够帮助用户在处理中文文本时获得更好的搜索效果。
2. 项目使用的关键技术和框架
该插件使用了ansj分词器,这是一个基于n-gram模型的中文分词算法。ansj分词器具有高效、灵活的特点,支持多种分词粒度,能够满足不同场景下的中文文本处理需求。此外,它还支持自定义词典,增强了对特定领域文本的解析能力。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装elasticsearch-analysis-ansj之前,请确保您的系统中已经安装了以下软件:
- Java Development Kit (JDK) 1.8 或更高版本
- Elasticsearch 5.x 或 6.x 版本(与插件版本兼容)
安装步骤
-
下载Elasticsearch对应版本的
elasticsearch-analysis-ansj插件根据您安装的Elasticsearch版本,在Elasticsearch的插件目录下运行以下命令来下载对应的插件。这里假设您的Elasticsearch版本是6.x:
bin/elasticsearch-plugin install file:/path/to/elasticsearch-analysis-ansj-6.x.x.zip请将
/path/to/elasticsearch-analysis-ansj-6.x.x.zip替换为您下载的插件文件的实际路径。 -
安装插件
运行上述命令后,Elasticsearch会自动解压插件并安装到相应的插件目录。
-
重启Elasticsearch
安装完插件后,需要重启Elasticsearch服务以使插件生效。
bin/elasticsearch -
验证插件安装
重启完成后,可以通过Elasticsearch的命令行工具来检查插件是否安装成功:
curl -X GET "localhost:9200/_nodes/info/plugins"查看返回的JSON结果中是否包含
elasticsearch-analysis-ansj。 -
配置分词器
如果需要自定义分词器的行为,可以在Elasticsearch的配置文件
elasticsearch.yml中添加相应的配置项,例如:index.analysis.filter.my_stopwords: type: stop stopwords: [~,!,@,...]以上配置创建了一个名为
my_stopwords的停用词过滤器,用于过滤掉特定的停用词。
完成以上步骤后,您就可以在Elasticsearch中使用elasticsearch-analysis-ansj插件进行中文分词处理了。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00