elasticsearch-analysis-ansj 的安装和配置教程
1. 项目基础介绍和主要编程语言
elasticsearch-analysis-ansj 是一个开源的 Elasticsearch 分析器插件,用于将文本数据进行分析,以便在 Elasticsearch 中进行索引和搜索。它基于 ANSJ 分词器,ANSJ 是一个基于 Java 实现的中文分词器,支持多种分词算法,能够有效处理中文文本。
该项目主要使用 Java 编程语言开发,需要 Java 环境支持。
2. 项目使用的关键技术和框架
- Elasticsearch: 一个分布式、RESTful 搜索和分析引擎,适用于处理大规模数据。
- ANSJ 分词器: 一个中文分词算法库,提供多种分词模式,适用于不同的中文处理需求。
- Lucene: Elasticsearch 底层的搜索引擎核心库,也是 ANSJ 分词器所依赖的库。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在安装 elasticsearch-analysis-ansj 插件之前,请确保以下条件已经满足:
- 安装了 Java 环境,版本至少为 Java 8。
- 安装了 Elasticsearch,版本需与插件兼容。
安装步骤
-
下载插件代码
首先,您需要从 Elasticsearch 插件市场下载
elasticsearch-analysis-ansj插件,或者从上述提供的 GitHub 链接克隆代码仓库。如果您使用命令行,可以使用以下命令克隆仓库:
git clone https://github.com/4onni/elasticsearch-analysis-ansj.git -
编译插件
进入下载的插件目录,使用 Maven 命令编译插件:
cd elasticsearch-analysis-ansj mvn clean install -
安装插件
编译成功后,将生成的插件 jar 文件复制到 Elasticsearch 的
plugins目录下。例如,如果您的 Elasticsearch 安装在/usr/share/elasticsearch目录,那么插件应该被放置在/usr/share/elasticsearch/plugins/analysis-ansj目录。cp target/elasticsearch-analysis-ansj-<version>.jar /usr/share/elasticsearch/plugins/analysis-ansj/请将
<version>替换为实际的版本号。 -
配置 Elasticsearch
修改 Elasticsearch 的配置文件
elasticsearch.yml,添加如下配置:index.analysis.filter.ansj_stopwords.type: stop index.analysis.filter.ansj_stopwords.stopwords: [~, !, @, #, $, %, ^, &, *, (, ), _, +, -, =, |, \, [, ], {, }, ;, :, ,, <, >, ?, /]以上配置为可选,用于定义停用词。
-
重启 Elasticsearch
最后,重启 Elasticsearch 服务以使插件生效:
sudo systemctl restart elasticsearch或者如果您在 Windows 系统上,运行:
net stop elasticsearch net start elasticsearch
完成以上步骤后,您就可以在 Elasticsearch 中使用 elasticsearch-analysis-ansj 插件进行中文文本分析了。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00