elasticsearch-analysis-ansj 的安装和配置教程
1. 项目基础介绍和主要编程语言
elasticsearch-analysis-ansj 是一个开源的 Elasticsearch 分析器插件,用于将文本数据进行分析,以便在 Elasticsearch 中进行索引和搜索。它基于 ANSJ 分词器,ANSJ 是一个基于 Java 实现的中文分词器,支持多种分词算法,能够有效处理中文文本。
该项目主要使用 Java 编程语言开发,需要 Java 环境支持。
2. 项目使用的关键技术和框架
- Elasticsearch: 一个分布式、RESTful 搜索和分析引擎,适用于处理大规模数据。
- ANSJ 分词器: 一个中文分词算法库,提供多种分词模式,适用于不同的中文处理需求。
- Lucene: Elasticsearch 底层的搜索引擎核心库,也是 ANSJ 分词器所依赖的库。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在安装 elasticsearch-analysis-ansj 插件之前,请确保以下条件已经满足:
- 安装了 Java 环境,版本至少为 Java 8。
- 安装了 Elasticsearch,版本需与插件兼容。
安装步骤
-
下载插件代码
首先,您需要从 Elasticsearch 插件市场下载
elasticsearch-analysis-ansj插件,或者从上述提供的 GitHub 链接克隆代码仓库。如果您使用命令行,可以使用以下命令克隆仓库:
git clone https://github.com/4onni/elasticsearch-analysis-ansj.git -
编译插件
进入下载的插件目录,使用 Maven 命令编译插件:
cd elasticsearch-analysis-ansj mvn clean install -
安装插件
编译成功后,将生成的插件 jar 文件复制到 Elasticsearch 的
plugins目录下。例如,如果您的 Elasticsearch 安装在/usr/share/elasticsearch目录,那么插件应该被放置在/usr/share/elasticsearch/plugins/analysis-ansj目录。cp target/elasticsearch-analysis-ansj-<version>.jar /usr/share/elasticsearch/plugins/analysis-ansj/请将
<version>替换为实际的版本号。 -
配置 Elasticsearch
修改 Elasticsearch 的配置文件
elasticsearch.yml,添加如下配置:index.analysis.filter.ansj_stopwords.type: stop index.analysis.filter.ansj_stopwords.stopwords: [~, !, @, #, $, %, ^, &, *, (, ), _, +, -, =, |, \, [, ], {, }, ;, :, ,, <, >, ?, /]以上配置为可选,用于定义停用词。
-
重启 Elasticsearch
最后,重启 Elasticsearch 服务以使插件生效:
sudo systemctl restart elasticsearch或者如果您在 Windows 系统上,运行:
net stop elasticsearch net start elasticsearch
完成以上步骤后,您就可以在 Elasticsearch 中使用 elasticsearch-analysis-ansj 插件进行中文文本分析了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00