ChatTTS项目在Mac M1设备上的运行问题分析与解决方案
2025-05-04 22:07:01作者:宗隆裙
ChatTTS是一个开源的文本转语音项目,近期有用户反馈在Mac M1设备上运行时出现了错误。本文将详细分析该问题的原因,并提供完整的解决方案。
问题现象
当用户在Mac M1设备上运行ChatTTS时,系统会提示"未找到GPU,使用CPU代替",随后出现一系列模型未初始化的警告信息,最终导致断言错误(AssertionError)。这表明程序在初始化过程中未能正确加载必要的模型组件。
问题原因分析
-
GPU兼容性问题:Mac M1设备使用的是Apple Silicon芯片,其GPU架构与传统NVIDIA GPU不同,导致项目默认的GPU支持无法正常工作。
-
模型加载路径问题:程序未能自动定位到模型文件的正确路径,导致各组件初始化失败。
-
设备设置问题:默认配置可能不适合在Mac M1上运行,需要显式指定使用CPU。
解决方案
方法一:完整手动加载模型
import ChatTTS
import scipy
# 指定模型路径(根据实际下载位置调整)
model_path = '/Users/your_username/.cache/modelscope/hub/pzc163/chatTTS'
chat = ChatTTS.Chat()
chat.load_models(
vocos_config_path=f"{model_path}/config/vocos.yaml",
vocos_ckpt_path=f"{model_path}/asset/Vocos.pt",
dvae_config_path=f"{model_path}/config/dvae.yaml",
dvae_ckpt_path=f"{model_path}/asset/DVAE.pt",
gpt_config_path=f"{model_path}/config/gpt.yaml",
gpt_ckpt_path=f"{model_path}/asset/GPT.pt",
decoder_config_path=f"{model_path}/config/decoder.yaml",
decoder_ckpt_path=f"{model_path}/asset/Decoder.pt",
tokenizer_path=f"{model_path}/asset/tokenizer.pt",
device='cpu' # 显式指定使用CPU
)
texts = ["hello"]
wavs = chat.infer(texts, use_decoder=True)
scipy.io.wavfile.write(filename="./output.wav", rate=24_000, data=wavs[0].T)
方法二:使用modelscope下载模型
from modelscope import snapshot_download
import ChatTTS
# 下载模型
model_dir = snapshot_download('pzc163/chatTTS')
# 初始化ChatTTS
chat = ChatTTS.Chat()
chat.load_models(source="local", local_path=model_dir, device='cpu')
# 使用示例
texts = ["hello"]
wavs = chat.infer(texts, use_decoder=True)
注意事项
-
确保已安装所有必要的依赖包,特别是scipy和modelscope(如果选择第二种方法)。
-
模型文件较大,下载可能需要较长时间,请确保网络连接稳定。
-
在Mac M1上使用CPU运行可能会比GPU慢,这是正常现象。
-
如果遇到权限问题,可能需要使用
chmod命令为模型文件添加读取权限。
性能优化建议
虽然Mac M1的GPU无法直接使用,但可以尝试以下方法提高性能:
-
使用M1的神经引擎加速:确保安装了最新版的PyTorch-MPS支持。
-
减少批量大小:一次处理较少的文本可以降低内存需求。
-
考虑使用量化模型(如果项目支持)以减少计算量。
通过以上方法,用户应该能够在Mac M1设备上成功运行ChatTTS项目并实现文本转语音功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1