ChatTTS项目在Mac M1设备上的运行问题分析与解决方案
2025-05-04 00:37:01作者:宗隆裙
ChatTTS是一个开源的文本转语音项目,近期有用户反馈在Mac M1设备上运行时出现了错误。本文将详细分析该问题的原因,并提供完整的解决方案。
问题现象
当用户在Mac M1设备上运行ChatTTS时,系统会提示"未找到GPU,使用CPU代替",随后出现一系列模型未初始化的警告信息,最终导致断言错误(AssertionError)。这表明程序在初始化过程中未能正确加载必要的模型组件。
问题原因分析
-
GPU兼容性问题:Mac M1设备使用的是Apple Silicon芯片,其GPU架构与传统NVIDIA GPU不同,导致项目默认的GPU支持无法正常工作。
-
模型加载路径问题:程序未能自动定位到模型文件的正确路径,导致各组件初始化失败。
-
设备设置问题:默认配置可能不适合在Mac M1上运行,需要显式指定使用CPU。
解决方案
方法一:完整手动加载模型
import ChatTTS
import scipy
# 指定模型路径(根据实际下载位置调整)
model_path = '/Users/your_username/.cache/modelscope/hub/pzc163/chatTTS'
chat = ChatTTS.Chat()
chat.load_models(
vocos_config_path=f"{model_path}/config/vocos.yaml",
vocos_ckpt_path=f"{model_path}/asset/Vocos.pt",
dvae_config_path=f"{model_path}/config/dvae.yaml",
dvae_ckpt_path=f"{model_path}/asset/DVAE.pt",
gpt_config_path=f"{model_path}/config/gpt.yaml",
gpt_ckpt_path=f"{model_path}/asset/GPT.pt",
decoder_config_path=f"{model_path}/config/decoder.yaml",
decoder_ckpt_path=f"{model_path}/asset/Decoder.pt",
tokenizer_path=f"{model_path}/asset/tokenizer.pt",
device='cpu' # 显式指定使用CPU
)
texts = ["hello"]
wavs = chat.infer(texts, use_decoder=True)
scipy.io.wavfile.write(filename="./output.wav", rate=24_000, data=wavs[0].T)
方法二:使用modelscope下载模型
from modelscope import snapshot_download
import ChatTTS
# 下载模型
model_dir = snapshot_download('pzc163/chatTTS')
# 初始化ChatTTS
chat = ChatTTS.Chat()
chat.load_models(source="local", local_path=model_dir, device='cpu')
# 使用示例
texts = ["hello"]
wavs = chat.infer(texts, use_decoder=True)
注意事项
-
确保已安装所有必要的依赖包,特别是scipy和modelscope(如果选择第二种方法)。
-
模型文件较大,下载可能需要较长时间,请确保网络连接稳定。
-
在Mac M1上使用CPU运行可能会比GPU慢,这是正常现象。
-
如果遇到权限问题,可能需要使用
chmod命令为模型文件添加读取权限。
性能优化建议
虽然Mac M1的GPU无法直接使用,但可以尝试以下方法提高性能:
-
使用M1的神经引擎加速:确保安装了最新版的PyTorch-MPS支持。
-
减少批量大小:一次处理较少的文本可以降低内存需求。
-
考虑使用量化模型(如果项目支持)以减少计算量。
通过以上方法,用户应该能够在Mac M1设备上成功运行ChatTTS项目并实现文本转语音功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0118
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
366
Ascend Extension for PyTorch
Python
240
272
暂无简介
Dart
693
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869