KServe部署模式解析:解决RawDeployment模式下模型访问404问题
2025-06-16 09:16:48作者:段琳惟
背景介绍
KServe作为Kubernetes原生的模型服务框架,支持多种部署模式以满足不同场景需求。其中RawDeployment模式因其资源利用率高、启动速度快等特点,常被用于生产环境。但在实际部署过程中,开发者可能会遇到模型服务访问返回404错误的问题,这通常与配置不当有关。
问题现象分析
当使用KServe 0.10.0版本在EKS集群上部署sklearn-iris模型服务时,虽然Kubernetes资源显示状态正常(READY为True),但通过Ingress访问时却收到"Model does not exist"的404错误。这种现象表明:
- 基础设施层(Kubernetes资源)部署成功
- 请求能够到达服务入口
- 但模型服务路由未能正确建立
核心问题定位
经过深入排查,发现问题根源在于Helm Chart配置中的几个关键参数:
- 域名模板配置:原始配置中的
domainTemplate包含连字符"-",这在某些DNS环境中会导致解析问题 - 网关服务选择:未正确指定Istio Ingress Gateway的服务选择器
- 部署模式冲突:虽然指定了RawDeployment模式,但部分配置仍保留了Serverless相关设置
解决方案
1. 域名模板优化
将默认的:
{{ .Name }}-{{ .Namespace }}.{{ .IngressDomain }}
调整为:
{{ .Name }}.{{ .Namespace }}.{{ .IngressDomain }}
避免特殊字符可能带来的解析问题。
2. 网关服务配置确认
确保ingressGateway字段正确指向Kubeflow的网关服务:
ingressGateway: "kubeflow/kubeflow-gateway"
3. 部署模式一致性检查
在RawDeployment模式下,需要确保:
- 禁用Serverless相关组件
- 明确指定部署类型:
defaultDeploymentMode: "Raw"
实施验证
完成上述配置调整后,按以下步骤验证:
- 重新部署InferenceService
- 检查Pod状态:
kubectl get pods -n kserve-sample-model
- 验证服务端点:
kubectl get inferenceservice sklearn-iris -n kserve-sample-model
- 测试模型预测:
curl -v -H "Host: ${SERVICE_HOSTNAME}" \
http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/sklearn-iris:predict \
-d @./iris-input.json
最佳实践建议
- 环境预检:部署前检查DNS解析规则是否支持服务名称格式
- 配置审计:使用
kubectl diff检查Helm变更 - 渐进式部署:先测试简单模型,再逐步增加复杂度
- 监控集成:配置Prometheus监控指标,实时掌握服务状态
总结
KServe的RawDeployment模式虽然配置相对复杂,但通过正确的网关配置、合理的域名策略和一致的部署模式设置,可以构建稳定高效的模型服务环境。遇到404类问题时,建议按照"基础设施→网络路由→服务配置"的层次逐步排查,重点关注服务发现和请求路由的关键环节。
对于生产环境,还建议考虑:
- 实施服务网格级别的流量监控
- 配置详细的访问日志
- 建立自动化部署流水线
- 制定完善的回滚机制
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669