KServe中如何禁用默认HPA并实现自定义自动扩缩容
2025-06-15 04:26:34作者:俞予舒Fleming
在KServe的实际生产部署中,很多场景下我们需要禁用默认的水平Pod自动扩缩容(HPA)功能,转而使用基于自定义指标(如GPU利用率、请求数等)的自定义HPA策略。本文将详细介绍如何在KServe中实现这一需求。
默认HPA的问题
当使用KServe的RawDeployment模式部署InferenceService时,系统会默认创建一个基于CPU指标的HPA。这个默认HPA可能无法满足以下场景需求:
- 需要基于GPU利用率进行扩缩容
- 需要基于请求数/QPS进行扩缩容
- 已经使用其他监控系统(如Prometheus)实现了自定义扩缩容策略
禁用默认HPA的方法
在InferenceService的metadata.annotations中添加以下注解即可禁用默认HPA:
serving.kserve.io/autoscalerClass: "external"
这个注解会告诉KServe不要创建默认的HPA资源,允许用户完全控制自动扩缩容策略。
实现自定义HPA
禁用默认HPA后,我们可以创建自定义的HPA资源。以下是一个基于请求数(QPS)的HPA配置示例:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: sample
namespace: your-namespace
spec:
behavior:
scaleDown:
policies:
- periodSeconds: 60
type: Percent
value: 10
- periodSeconds: 60
type: Pods
value: 4
selectPolicy: Max
stabilizationWindowSeconds: 900
scaleUp:
policies:
- periodSeconds: 15
type: Pods
value: 4
- periodSeconds: 15
type: Percent
value: 100
selectPolicy: Max
stabilizationWindowSeconds: 0
maxReplicas: 4
metrics:
- pods:
metric:
name: requests_per_second
target:
averageValue: 500u
type: Value
type: Pods
minReplicas: 2
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: sample-predictor
自定义指标采集
要实现基于请求数的扩缩容,需要配置Prometheus Adapter来采集Istio的请求指标。以下是Prometheus Adapter的配置示例:
apiVersion: v1
data:
config.yaml: |
rules:
- metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[5m])) by (<<.GroupBy>>)
name:
as: requests_per_second
matches: istio_requests_total
resources:
overrides:
namespace:
resource: namespace
pod:
resource: pod
seriesQuery: istio_requests_total{pod!="", namespace!=""}
kind: ConfigMap
最佳实践建议
- 对于GPU推理服务,建议基于GPU利用率指标进行扩缩容
- 对于CPU推理服务,可以结合请求数和CPU利用率指标
- 设置合理的扩缩容策略,避免过于频繁的扩缩操作
- 为扩缩容设置适当的稳定窗口时间,防止抖动
通过这种方式,我们可以完全掌控KServe服务的自动扩缩容行为,根据实际业务需求定制最适合的扩缩容策略,而不受默认HPA的限制。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.45 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
192
79
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692