Self-Correction-Human-Parsing 项目使用教程
2024-09-17 17:29:22作者:薛曦旖Francesca
1. 项目目录结构及介绍
Self-Correction-Human-Parsing/
├── datasets/
│ └── ...
├── demo/
│ └── ...
├── mhp_extension/
│ └── ...
├── modules/
│ └── ...
├── networks/
│ └── ...
├── utils/
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── environment.yaml
├── evaluate.py
├── requirements.txt
├── simple_extractor.py
├── train.py
目录结构说明
- datasets/: 存放数据集相关文件。
- demo/: 存放演示代码和示例。
- mhp_extension/: 多人物解析任务的扩展模块。
- modules/: 项目的主要模块和功能实现。
- networks/: 神经网络模型定义。
- utils/: 工具函数和辅助功能。
- .gitignore: Git忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- environment.yaml: 项目依赖环境配置文件。
- evaluate.py: 模型评估脚本。
- requirements.txt: 项目依赖包列表。
- simple_extractor.py: 简单的人体解析提取脚本。
- train.py: 模型训练脚本。
2. 项目启动文件介绍
simple_extractor.py
该文件是项目的主要启动文件之一,用于从图像中提取人体解析表示。可以通过以下命令运行:
python simple_extractor.py --dataset [DATASET] --model-restore [CHECKPOINT_PATH] --input-dir [INPUT_PATH] --output-dir [OUTPUT_PATH]
参数说明
--dataset
: 数据集名称,可选值为lip
,atr
,pascal
。--model-restore
: 预训练模型的路径。--input-dir
: 输入图像的目录。--output-dir
: 输出解析结果的目录。
train.py
该文件用于训练模型。可以通过以下命令启动训练:
python train.py
训练过程中,模型会保存在 ./log
目录下。
evaluate.py
该文件用于评估模型的性能。可以通过以下命令运行:
python evaluate.py --model-restore [CHECKPOINT_PATH]
参数说明
--model-restore
: 需要评估的模型路径。
3. 项目的配置文件介绍
environment.yaml
该文件定义了项目的依赖环境,可以通过以下命令创建并激活虚拟环境:
conda env create -f environment.yaml
conda activate schp
requirements.txt
该文件列出了项目所需的所有Python依赖包,可以通过以下命令安装:
pip install -r requirements.txt
README.md
该文件包含了项目的详细介绍、使用说明和示例代码。建议在开始使用项目前仔细阅读该文件。
LICENSE
该文件包含了项目的开源许可证信息,通常为MIT许可证。
通过以上介绍,您应该能够顺利地启动和使用 Self-Correction-Human-Parsing
项目。如果有任何问题,请参考项目的 README.md
文件或联系项目维护者。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++018Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
155
1.99 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

Ascend Extension for PyTorch
Python
38
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
517
49

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K