oneDNN在ARM架构上的卷积性能回归问题分析与解决
问题背景
在深度学习推理框架oneDNN中,开发人员发现当使用ARM Compute Library(ACL)作为后端时,在Apple M2 Pro处理器上出现了卷积操作的性能退化现象。具体表现为某些特定卷积配置在ACL版本升级后执行时间显著增加。
性能退化现象
通过benchdnn测试工具,开发人员复现了以下典型性能退化案例:
-
对于输入形状为mb1_ic16oc96_ih112oh112kh1的卷积操作:
- ACL 24.09版本耗时:0.135毫秒
- ACL 24.11版本耗时:0.4毫秒
-
对于输入形状为mb1_ic144oc24_ih56oh56kh1的卷积操作:
- ACL 24.09版本耗时:0.1毫秒
- ACL 24.11版本耗时:0.22毫秒
-
对于输入形状为mb1_ic24oc144_ih56oh56kh1的卷积操作:
- ACL 24.09版本耗时:0.099毫秒
- ACL 24.11版本耗时:0.196毫秒
问题分析
经过技术团队调查,发现性能退化主要源于以下几个方面:
-
ACL版本兼容性问题:oneDNN 3.6.2版本要求最低ACL版本为24.11.1,而早期测试中使用了不兼容的ACL 24.09版本,导致性能基准不一致。
-
特定卷积配置敏感:某些特定形状的卷积操作(如1x1卷积)对底层实现的变化特别敏感,微小的算法调整可能导致显著的性能差异。
-
内存布局影响:测试中使用的"acdb"内存布局(一种特殊的NHWC变体)对性能有较大影响,当切换为"any"布局时性能表现会有所不同。
解决方案与验证
技术团队采取了以下措施解决该问题:
-
版本控制:确保使用兼容的ACL版本组合,避免因版本不匹配导致的性能问题。
-
问题定位:通过分析发现,导致性能退化的补丁已被回滚,后续版本中性能退化程度有所减轻。
-
持续监控:建立更完善的性能基准测试体系,对关键卷积操作进行定期性能监控。
-
版本升级验证:在ACL v52.1.0版本上验证,确认性能已恢复到合理水平:
- 原始测试案例在ACL v52.1.0上分别耗时0.15毫秒、0.11毫秒和0.11毫秒
技术建议
对于使用oneDNN和ACL的开发者,建议:
-
始终使用官方推荐的版本组合,避免兼容性问题。
-
对于性能关键的应用,建议进行全面的基准测试,覆盖各种可能的输入形状和内存布局。
-
关注oneDNN的verbose输出(使用ONEDNN_VERBOSE=dispatch),了解实际调用的内核实现。
-
对于Apple Silicon等ARM架构处理器,特别注意内存布局对性能的影响,必要时进行布局优化。
结论
本次性能回归问题展示了深度学习框架底层优化的重要性。通过技术团队的及时响应和深入分析,不仅解决了特定版本下的性能退化问题,还建立了更完善的性能监控机制。这为oneDNN在ARM架构上的持续优化奠定了坚实基础,也为开发者提供了宝贵的性能调优经验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00