oneDNN在ARM架构上的卷积性能回归问题分析与解决
问题背景
在深度学习推理框架oneDNN中,开发人员发现当使用ARM Compute Library(ACL)作为后端时,在Apple M2 Pro处理器上出现了卷积操作的性能退化现象。具体表现为某些特定卷积配置在ACL版本升级后执行时间显著增加。
性能退化现象
通过benchdnn测试工具,开发人员复现了以下典型性能退化案例:
-
对于输入形状为mb1_ic16oc96_ih112oh112kh1的卷积操作:
- ACL 24.09版本耗时:0.135毫秒
- ACL 24.11版本耗时:0.4毫秒
-
对于输入形状为mb1_ic144oc24_ih56oh56kh1的卷积操作:
- ACL 24.09版本耗时:0.1毫秒
- ACL 24.11版本耗时:0.22毫秒
-
对于输入形状为mb1_ic24oc144_ih56oh56kh1的卷积操作:
- ACL 24.09版本耗时:0.099毫秒
- ACL 24.11版本耗时:0.196毫秒
问题分析
经过技术团队调查,发现性能退化主要源于以下几个方面:
-
ACL版本兼容性问题:oneDNN 3.6.2版本要求最低ACL版本为24.11.1,而早期测试中使用了不兼容的ACL 24.09版本,导致性能基准不一致。
-
特定卷积配置敏感:某些特定形状的卷积操作(如1x1卷积)对底层实现的变化特别敏感,微小的算法调整可能导致显著的性能差异。
-
内存布局影响:测试中使用的"acdb"内存布局(一种特殊的NHWC变体)对性能有较大影响,当切换为"any"布局时性能表现会有所不同。
解决方案与验证
技术团队采取了以下措施解决该问题:
-
版本控制:确保使用兼容的ACL版本组合,避免因版本不匹配导致的性能问题。
-
问题定位:通过分析发现,导致性能退化的补丁已被回滚,后续版本中性能退化程度有所减轻。
-
持续监控:建立更完善的性能基准测试体系,对关键卷积操作进行定期性能监控。
-
版本升级验证:在ACL v52.1.0版本上验证,确认性能已恢复到合理水平:
- 原始测试案例在ACL v52.1.0上分别耗时0.15毫秒、0.11毫秒和0.11毫秒
技术建议
对于使用oneDNN和ACL的开发者,建议:
-
始终使用官方推荐的版本组合,避免兼容性问题。
-
对于性能关键的应用,建议进行全面的基准测试,覆盖各种可能的输入形状和内存布局。
-
关注oneDNN的verbose输出(使用ONEDNN_VERBOSE=dispatch),了解实际调用的内核实现。
-
对于Apple Silicon等ARM架构处理器,特别注意内存布局对性能的影响,必要时进行布局优化。
结论
本次性能回归问题展示了深度学习框架底层优化的重要性。通过技术团队的及时响应和深入分析,不仅解决了特定版本下的性能退化问题,还建立了更完善的性能监控机制。这为oneDNN在ARM架构上的持续优化奠定了坚实基础,也为开发者提供了宝贵的性能调优经验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00