oneDNN项目在AArch64平台上的卷积量化精度问题分析
2025-06-18 19:47:47作者:仰钰奇
问题背景
在oneDNN项目的持续集成测试中,开发团队发现了一个针对AArch64 CPU架构的测试失败问题。具体表现为在运行test_graph_unit_dnnl_convolution_cpu测试套件时,ConvBiasAddEltwise测试用例出现了数值精度不匹配的情况。
问题现象
测试用例比较了两个浮点数值:
- 实际输出值:-0.072591752
- 期望参考值:-0.072591871
两者之间存在微小的差异(约1.19×10⁻⁷的相对误差),导致测试断言失败。这个问题出现在一次量化重构的代码变更后,首次出现在提交af1410c2中。
技术分析
量化重构的影响
量化是深度学习推理中的重要优化技术,它将浮点计算转换为整数计算以提高性能。最近的量化重构可能改变了以下方面:
- 量化/反量化的舍入方式
- 中间结果的累加顺序
- 数值处理的精度控制
AArch64架构特性
AArch64架构(如AWS c7g实例使用的CPU)具有与x86不同的浮点运算特性:
- 可能使用不同的浮点运算单元
- 可能有不同的默认舍入模式
- 向量化指令集的实现差异
测试验证方法
当前测试使用了严格的相等比较,这在浮点运算中通常是不合适的,因为:
- 不同架构可能产生略有不同的结果
- 运算顺序变化会导致不同的舍入误差
- 量化过程本身会引入微小误差
解决方案
合理的解决方法应包括:
- 使用近似比较代替严格相等比较
- 设置合理的误差容忍阈值
- 考虑量化特有的误差范围
- 确保跨架构的一致性
经验总结
这个案例提醒我们:
- 浮点比较应该考虑架构差异
- 量化操作会引入数值精度变化
- CI测试需要覆盖多种硬件平台
- 数值敏感的变更需要全面的回归测试
在深度学习框架开发中,正确处理数值精度问题对于确保模型推理的正确性和跨平台一致性至关重要。开发者需要在性能优化和数值精度之间找到平衡点,并通过合理的测试策略来验证这种平衡。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
96
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
83
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
109
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
997
588
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
589
114
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26