推荐使用:Lanczos网络
在深度学习领域,特别是图神经网络(GNN)的研究中,Lanczos网络是一个值得关注的开源项目。该项目是基于PyTorch实现的,并已在ICLR 2019年会议上发表的论文《LanczosNet: Multi-Scale Deep Graph Convolutional Networks》中详细描述。
项目介绍
Lanczos网络是一种创新的多尺度深度图卷积网络,它利用了Lanczos算法的优势,能在低秩近似下处理大规模图数据,同时保持高效的性能和准确性。项目提供了九种最近的GNN模型作为基准,包括GCN、GGNN等,供用户比较和评估其性能。
项目技术分析
项目的核心是Lanczos算法的集成,这种算法允许对大型图进行局部化谱过滤,从而减少计算复杂性。模型可视化展示了多层次的节点交互,这使得Lanczos网络能够捕获不同尺度的拓扑信息。此外,项目还实现了AdaLanczosNet,一个自适应版本的Lanczos网络,以适应不同的输入图结构。
应用场景
Lanczos网络适用于各种涉及图数据分析的场景,如化学分子结构预测、社交网络分析、蛋白质相互作用网络建模以及任何其他基于图的数据集中的机器学习问题。在论文中,它在QM8化学性质预测数据集上取得了卓越的表现。
项目特点
- 高效: 利用Lanczos算法降低计算复杂度。
 - 通用: 兼容多种现有GNN模型,并且提供在通用图数据集上的应用示例。
 - 可扩展: 容易添加新的模型和支持自定义图数据集。
 - 易于使用: 提供详细的配置文件和脚本,快速启动训练和测试。
 - 结果可复现: 提供预处理数据,确保实验结果的一致性。
 
使用说明
要开始使用Lanczos网络,只需下载预处理数据并运行setup.sh脚本安装依赖项。然后,通过指定配置文件即可开始训练和测试。
如果你正在寻找一种高效且准确的图卷积网络解决方案,那么Lanczos网络是一个不容错过的选择。它不仅在理论上有扎实的支撑,而且在实践中也展现了强大的性能。在你的下一个图数据相关的项目中尝试一下Lanczos网络吧!
引用
在你的研究中使用这个代码库时,请引用以下论文:
@inproceedings{liao2019lanczos,
  title={LanczosNet: Multi-Scale Deep Graph Convolutional Networks},
  author={Liao, Renjie and Zhao, Zhizhen and Urtasun, Raquel and Zemel, Richard},
  booktitle={ICLR},
  year={2019}
}
对于任何问题或发现的bug,请创建GitHub问题或直接联系rjliao@cs.toronto.edu。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00