首页
/ 推荐使用:Lanczos网络

推荐使用:Lanczos网络

2024-05-21 18:44:47作者:凌朦慧Richard

在深度学习领域,特别是图神经网络(GNN)的研究中,Lanczos网络是一个值得关注的开源项目。该项目是基于PyTorch实现的,并已在ICLR 2019年会议上发表的论文《LanczosNet: Multi-Scale Deep Graph Convolutional Networks》中详细描述。

项目介绍

Lanczos网络是一种创新的多尺度深度图卷积网络,它利用了Lanczos算法的优势,能在低秩近似下处理大规模图数据,同时保持高效的性能和准确性。项目提供了九种最近的GNN模型作为基准,包括GCN、GGNN等,供用户比较和评估其性能。

项目技术分析

项目的核心是Lanczos算法的集成,这种算法允许对大型图进行局部化谱过滤,从而减少计算复杂性。模型可视化展示了多层次的节点交互,这使得Lanczos网络能够捕获不同尺度的拓扑信息。此外,项目还实现了AdaLanczosNet,一个自适应版本的Lanczos网络,以适应不同的输入图结构。

应用场景

Lanczos网络适用于各种涉及图数据分析的场景,如化学分子结构预测、社交网络分析、蛋白质相互作用网络建模以及任何其他基于图的数据集中的机器学习问题。在论文中,它在QM8化学性质预测数据集上取得了卓越的表现。

项目特点

  • 高效: 利用Lanczos算法降低计算复杂度。
  • 通用: 兼容多种现有GNN模型,并且提供在通用图数据集上的应用示例。
  • 可扩展: 容易添加新的模型和支持自定义图数据集。
  • 易于使用: 提供详细的配置文件和脚本,快速启动训练和测试。
  • 结果可复现: 提供预处理数据,确保实验结果的一致性。

使用说明

要开始使用Lanczos网络,只需下载预处理数据并运行setup.sh脚本安装依赖项。然后,通过指定配置文件即可开始训练和测试。

如果你正在寻找一种高效且准确的图卷积网络解决方案,那么Lanczos网络是一个不容错过的选择。它不仅在理论上有扎实的支撑,而且在实践中也展现了强大的性能。在你的下一个图数据相关的项目中尝试一下Lanczos网络吧!

引用

在你的研究中使用这个代码库时,请引用以下论文:

@inproceedings{liao2019lanczos,
  title={LanczosNet: Multi-Scale Deep Graph Convolutional Networks},
  author={Liao, Renjie and Zhao, Zhizhen and Urtasun, Raquel and Zemel, Richard},
  booktitle={ICLR},
  year={2019}
}

对于任何问题或发现的bug,请创建GitHub问题或直接联系rjliao@cs.toronto.edu

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1