Great Expectations 中 ExpectColumnValuesToBeOfType 验证异常问题分析
问题概述
在使用 Great Expectations 进行数据质量验证时,部分用户在使用 ExpectColumnValuesToBeOfType 和 ExpectColumnValuesToBeInTypeList 这两个期望条件时遇到了异常。具体表现为验证过程中抛出 KeyError: 'type' 错误,导致验证无法正常完成。
问题重现场景
这个问题主要出现在以下场景中:
- 使用 PostgreSQL 或 Athena 等非流式数据源时
- 通过
add_query_asset方法创建查询型数据资产时 - 针对列数据类型进行验证时
值得注意的是,当使用 add_table_asset 方法创建表型数据资产时,相同的验证条件可以正常工作。
技术分析
根本原因
经过分析,这个问题源于 Great Expectations 在获取查询结果集的列类型信息时的方式差异。当使用查询型资产时,系统无法正确获取到列的类型定义信息,导致在尝试访问类型字典中的 'type' 键时抛出异常。
代码层面分析
在 expect_column_values_to_be_of_type.py 文件中,验证逻辑尝试从类型字典中获取 'type' 字段:
actual_column_type = [
type_dict["type"] # 这里会抛出KeyError异常
for type_dict in metrics["table.column_types"]
]
当使用查询型资产时,metrics["table.column_types"] 返回的类型信息可能不包含标准的 'type' 键,导致字典访问失败。
解决方案与建议
临时解决方案
-
使用表型资产替代查询型资产
如果可能,将查询结果存储为临时表,然后使用add_table_asset方法创建资产进行验证。 -
在查询中显式转换数据类型
在SQL查询中使用CAST或CONVERT函数显式指定列的数据类型:SELECT CAST(id AS INTEGER) AS id, other_columns FROM table_name -
使用其他验证方式
考虑使用基于值的验证(如范围验证)作为替代方案。
长期解决方案
对于Great Expectations开发团队,建议:
- 增强查询型资产对列类型信息的处理能力
- 为不同类型的数据库连接器提供更完善的类型映射支持
- 在验证失败时提供更友好的错误信息和回退机制
最佳实践建议
-
优先使用表型资产
在可能的情况下,优先使用add_table_asset而不是add_query_asset。 -
明确数据类型定义
在创建表或视图时,尽可能明确地定义列的数据类型。 -
逐步验证
先验证简单的期望条件(如行数、值范围),再验证复杂的数据类型条件。 -
监控和日志
对验证过程实施完善的监控和日志记录,便于快速定位问题。
总结
Great Expectations 是一个强大的数据质量验证工具,但在处理某些特定场景下的数据类型验证时仍存在局限性。理解这些限制并采取适当的变通方案,可以帮助数据团队更有效地实施数据质量监控。随着项目的持续发展,这些问题有望在未来的版本中得到改进和完善。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00