Great Expectations 中 ExpectColumnValuesToBeOfType 验证异常问题分析
问题概述
在使用 Great Expectations 进行数据质量验证时,部分用户在使用 ExpectColumnValuesToBeOfType 和 ExpectColumnValuesToBeInTypeList 这两个期望条件时遇到了异常。具体表现为验证过程中抛出 KeyError: 'type' 错误,导致验证无法正常完成。
问题重现场景
这个问题主要出现在以下场景中:
- 使用 PostgreSQL 或 Athena 等非流式数据源时
- 通过
add_query_asset方法创建查询型数据资产时 - 针对列数据类型进行验证时
值得注意的是,当使用 add_table_asset 方法创建表型数据资产时,相同的验证条件可以正常工作。
技术分析
根本原因
经过分析,这个问题源于 Great Expectations 在获取查询结果集的列类型信息时的方式差异。当使用查询型资产时,系统无法正确获取到列的类型定义信息,导致在尝试访问类型字典中的 'type' 键时抛出异常。
代码层面分析
在 expect_column_values_to_be_of_type.py 文件中,验证逻辑尝试从类型字典中获取 'type' 字段:
actual_column_type = [
type_dict["type"] # 这里会抛出KeyError异常
for type_dict in metrics["table.column_types"]
]
当使用查询型资产时,metrics["table.column_types"] 返回的类型信息可能不包含标准的 'type' 键,导致字典访问失败。
解决方案与建议
临时解决方案
-
使用表型资产替代查询型资产
如果可能,将查询结果存储为临时表,然后使用add_table_asset方法创建资产进行验证。 -
在查询中显式转换数据类型
在SQL查询中使用CAST或CONVERT函数显式指定列的数据类型:SELECT CAST(id AS INTEGER) AS id, other_columns FROM table_name -
使用其他验证方式
考虑使用基于值的验证(如范围验证)作为替代方案。
长期解决方案
对于Great Expectations开发团队,建议:
- 增强查询型资产对列类型信息的处理能力
- 为不同类型的数据库连接器提供更完善的类型映射支持
- 在验证失败时提供更友好的错误信息和回退机制
最佳实践建议
-
优先使用表型资产
在可能的情况下,优先使用add_table_asset而不是add_query_asset。 -
明确数据类型定义
在创建表或视图时,尽可能明确地定义列的数据类型。 -
逐步验证
先验证简单的期望条件(如行数、值范围),再验证复杂的数据类型条件。 -
监控和日志
对验证过程实施完善的监控和日志记录,便于快速定位问题。
总结
Great Expectations 是一个强大的数据质量验证工具,但在处理某些特定场景下的数据类型验证时仍存在局限性。理解这些限制并采取适当的变通方案,可以帮助数据团队更有效地实施数据质量监控。随着项目的持续发展,这些问题有望在未来的版本中得到改进和完善。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00