CASIA-SURF_CeFA 开源项目使用指南
2024-09-27 12:40:12作者:管翌锬
1. 目录结构及介绍
本项目基于Git仓库 AlexanderParkin/CASIA-SURF_CeFA,主要用于实现CVPR2020中提出的面部反欺骗攻击检测挑战解决方案。以下是其主要的目录结构及其简介:
CASIA-SURF_CeFA/
├── at_learner_core # 核心学习器模块,包含训练和推理的核心逻辑
│ ├── utils # 辅助工具,包括Optical Flow相关的代码
│ └── ... # 其它相关文件夹和文件
├── data # 数据处理和列表准备相关脚本以及数据存放路径指示
│ ├── prepare_lists.py # 准备训练、验证和测试列表的脚本
│ └── ... # 数据集相关配置和文件
├── experiments # 实验配置文件夹,每个子文件夹对应一个实验配置
│ ├── rgb_track # 与RGB跟踪相关的实验配置
│ │ └── ... # 每个实验的详细配置文件
│ └── ... # 其他模态或额外实验的配置
├── LICENSE # 许可证文件,采用MIT License
├── README.md # 项目说明文档
└── scripts # 可能包含运行项目所需的脚本文件,如数据准备、训练、预测等
2. 项目的启动文件介绍
主要启动流程
-
环境搭建与依赖安装: 首先,在项目根目录下创建一个新的Python环境并激活它。
python -m venv casia_cefa source casia_cefa/bin/activate pip install -e path/to/at_learner_core/repository/ -
安装PyFlow: 这是用于光学流计算的关键库。
cd at_learner_core/utils git clone https://github.com/pathak22/pyflow # 编辑pyflow中的OpticalFlow.cpp以减少日志输出 # 安装PyFlow库 pip install cython python setup.py build_ext -i -
数据列表准备与模型训练: 利用
prepare_lists.py准备数据列表,并执行相应的训练脚本。例如,对于RGB轨道:cd data python prepare_lists.py --data_path /path/to/casia/surf/cefa/directory cd ../rgb_track python configs_final_exp.py CUDA_VISIBLE_DEVICES=0 python main.py --config experiments/rgb_track/exp1_protocol_4_1/rgb_track_exp1_protocol_4_1_config -
预测与评估: 训练完成后,使用特定的配置文件和检查点进行预测。
CUDA_VISIBLE_DEVICES=0 python test_config.py CUDA_VISIBLE_DEVICES=0 python rgb_predictor.py ... # 使用相应的配置文件和模型检查点
3. 项目的配置文件介绍
配置文件主要位于experiments文件夹内,其中每一子文件夹代表一组实验设置,如rgb_track。在这些子文件夹中,有多个.py文件,每个文件定义了一个具体的实验配置(比如网络架构、损失函数、优化器参数、训练数据加载方式等)。这些配置文件通过命令行参数指定,来控制训练过程的不同方面。例如:
- exp1_protocol_4_1_config.py: 包含了协议4.1下的实验配置,可能会指定模型结构、训练批次大小、学习率策略等。
- rgb_track_exp1_protocol_4_1_config: 特定于RGB轨迹的实验配置文件,定义模型训练的具体细节。
在具体操作时,用户需根据实际需求修改配置文件或脚本中的参数,确保它们指向正确的数据路径、模型保存路径等,以顺利完成实验流程。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248