CASIA-SURF_CeFA 开源项目使用指南
2024-09-27 18:38:18作者:管翌锬
1. 目录结构及介绍
本项目基于Git仓库 AlexanderParkin/CASIA-SURF_CeFA
,主要用于实现CVPR2020中提出的面部反欺骗攻击检测挑战解决方案。以下是其主要的目录结构及其简介:
CASIA-SURF_CeFA/
├── at_learner_core # 核心学习器模块,包含训练和推理的核心逻辑
│ ├── utils # 辅助工具,包括Optical Flow相关的代码
│ └── ... # 其它相关文件夹和文件
├── data # 数据处理和列表准备相关脚本以及数据存放路径指示
│ ├── prepare_lists.py # 准备训练、验证和测试列表的脚本
│ └── ... # 数据集相关配置和文件
├── experiments # 实验配置文件夹,每个子文件夹对应一个实验配置
│ ├── rgb_track # 与RGB跟踪相关的实验配置
│ │ └── ... # 每个实验的详细配置文件
│ └── ... # 其他模态或额外实验的配置
├── LICENSE # 许可证文件,采用MIT License
├── README.md # 项目说明文档
└── scripts # 可能包含运行项目所需的脚本文件,如数据准备、训练、预测等
2. 项目的启动文件介绍
主要启动流程
-
环境搭建与依赖安装: 首先,在项目根目录下创建一个新的Python环境并激活它。
python -m venv casia_cefa source casia_cefa/bin/activate pip install -e path/to/at_learner_core/repository/
-
安装PyFlow: 这是用于光学流计算的关键库。
cd at_learner_core/utils git clone https://github.com/pathak22/pyflow # 编辑pyflow中的OpticalFlow.cpp以减少日志输出 # 安装PyFlow库 pip install cython python setup.py build_ext -i
-
数据列表准备与模型训练: 利用
prepare_lists.py
准备数据列表,并执行相应的训练脚本。例如,对于RGB轨道:cd data python prepare_lists.py --data_path /path/to/casia/surf/cefa/directory cd ../rgb_track python configs_final_exp.py CUDA_VISIBLE_DEVICES=0 python main.py --config experiments/rgb_track/exp1_protocol_4_1/rgb_track_exp1_protocol_4_1_config
-
预测与评估: 训练完成后,使用特定的配置文件和检查点进行预测。
CUDA_VISIBLE_DEVICES=0 python test_config.py CUDA_VISIBLE_DEVICES=0 python rgb_predictor.py ... # 使用相应的配置文件和模型检查点
3. 项目的配置文件介绍
配置文件主要位于experiments
文件夹内,其中每一子文件夹代表一组实验设置,如rgb_track
。在这些子文件夹中,有多个.py
文件,每个文件定义了一个具体的实验配置(比如网络架构、损失函数、优化器参数、训练数据加载方式等)。这些配置文件通过命令行参数指定,来控制训练过程的不同方面。例如:
- exp1_protocol_4_1_config.py: 包含了协议4.1下的实验配置,可能会指定模型结构、训练批次大小、学习率策略等。
- rgb_track_exp1_protocol_4_1_config: 特定于RGB轨迹的实验配置文件,定义模型训练的具体细节。
在具体操作时,用户需根据实际需求修改配置文件或脚本中的参数,确保它们指向正确的数据路径、模型保存路径等,以顺利完成实验流程。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
232
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
78

暂无简介
Dart
534
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648