CASIA-SURF 2019 代码库使用教程
2024-09-14 03:08:43作者:毕习沙Eudora
1. 项目介绍
CASIA-SURF 2019 代码库是为 ChaLearn Face Anti-spoofing Attack Detection Challenge@CVPR2019 竞赛开发的。该项目旨在通过深度学习技术检测人脸反欺骗攻击,确保人脸识别系统的安全性。代码库提供了完整的训练和测试流程,支持多种深度学习模型,并包含数据预处理、模型训练和评估等功能。
2. 项目快速启动
2.1 环境准备
首先,确保你的系统安装了 Python 3.6 或更高版本,并安装了以下依赖库:
pip install -r requirements.txt
2.2 数据集准备
- 下载 CASIA-SURF 数据集,并解压到指定目录。
- 将本项目文件夹
casia-surf-2019-codes拷贝到 CASIA-SURF 数据集目录中,确保与phase1和phase2文件夹同级。
2.3 数据预处理
在终端中执行以下命令进行数据预处理:
cd casia-surf-2019-codes
python data_preprocess.py
python data_preprocess.py train
python data_preprocess.py train --no-enmfake
python data_preprocess.py train --aug
2.4 模型训练
使用以下命令进行模型训练:
python train_depth_vmspoofnet.py
python train_depth_vmspoofnet_step2.py
python train_depth_vmspoofnet_step3.py
2.5 模型测试
使用训练好的模型进行测试:
python commit.py /phase1/val_public_list.txt --load-epoch 73
python commit_phase2.py /phase2/test_public_list.txt --load-epoch 73
3. 应用案例和最佳实践
3.1 应用案例
CASIA-SURF 2019 代码库可以应用于各种需要人脸反欺骗检测的场景,如金融支付、门禁系统、社交媒体等。通过训练和部署该模型,可以有效防止人脸识别系统被欺骗攻击。
3.2 最佳实践
- 数据增强:在训练过程中使用数据增强技术(如上采样和下采样)可以提高模型的泛化能力。
- 多模型融合:尝试使用不同的深度学习模型进行训练,并通过模型融合技术提高检测精度。
- 持续优化:定期更新模型,使用最新的数据集进行训练,以应对不断变化的攻击手段。
4. 典型生态项目
- MXNet:CASIA-SURF 2019 代码库基于 MXNet 框架开发,MXNet 是一个高效且灵活的深度学习框架,支持多种硬件平台。
- OpenCV:在数据预处理阶段,OpenCV 用于图像处理和特征提取。
- TensorFlow:虽然本项目主要使用 MXNet,但 TensorFlow 也是一个流行的深度学习框架,可以用于类似任务的开发。
通过以上步骤,你可以快速上手 CASIA-SURF 2019 代码库,并将其应用于实际的人脸反欺骗检测任务中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
303
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247