DeepGEMM项目中连续布局的M维度对齐问题解析
2025-06-08 22:34:41作者:董宙帆
背景介绍
在DeepGEMM项目中,get_m_alignment_for_contiguous_layout函数固定将M维度的对齐值设为128。这一设计选择在大多数训练和前向推理场景下表现良好,因为在这些场景中,M维度的大小通常较大(约4K左右),使用较大的BLOCK_M(128)能够带来更好的性能表现。
技术细节分析
连续布局与BLOCK_M设置
连续布局(contiguous layout)是DeepGEMM中一种重要的内存布局方式,特别适用于训练和前向推理场景。在这种布局下,M维度的对齐值被固定为128,这意味着:
- 输入矩阵的M维度必须是128的倍数
- 计算时使用的BLOCK_M值通常也设为128
这种设计基于一个重要的观察:在大多数实际应用中,M维度的尺寸都比较大,使用较大的BLOCK_M能够更好地利用计算资源,提高计算效率。
特殊情况下的性能考量
然而,在某些特殊场景下,特别是当M维度较小时(如64),使用BLOCK_M=128可能不是最优选择。例如:
- 在解码阶段,当专家选择严重偏斜时(如所有提示都相同)
- 当使用计算能力相对较低但内存带宽较高的硬件(如H20)时
在这些情况下,使用较小的BLOCK_M(如64)可能带来更好的性能表现。测试数据显示,在H20硬件上,当M=64时,使用BLOCK_M=64相比BLOCK_M=128可以获得更高的吞吐量。
解决方案探讨
项目维护者提出了几种可能的解决方案:
- 保持当前设计:考虑到大多数实际应用场景,维持BLOCK_M=128的默认设置
- 动态调整计算:在保持BLOCK_M=128的同时,当M较小时跳过第二个warp group的计算
- 支持自适应对齐:扩展接口以支持动态调整M维度的对齐值
目前,项目团队倾向于第二种方案,即在保持现有对齐值不变的情况下,通过优化计算逻辑来提升小M情况下的性能。这种方案的优势在于:
- 不会影响现有训练/推理框架的其他内核
- 保持了API的稳定性
- 仍然能够针对特定场景进行优化
实际应用建议
对于开发者而言,在实际应用中应当注意:
- 对于常规的大规模训练和前向推理,继续使用默认的BLOCK_M=128设置
- 对于特殊的解码场景,特别是专家选择不平衡的情况,可以考虑:
- 使用掩码布局(masked layout)处理小批量情况
- 确保专家负载均衡
- 关注项目未来的优化更新
未来优化方向
项目团队计划在未来版本中实现动态计算优化,即根据实际的M维度大小决定是否跳过部分计算。这种优化将特别有利于:
- 计算能力相对较低的硬件平台
- 专家模型中的特殊解码场景
- 其他M维度变化较大的应用场景
通过这种优化,DeepGEMM将能够在保持主流场景高性能的同时,更好地适应各种边缘情况的需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
248
317
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
214
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100