Milvus集群中流处理节点内存溢出问题分析与解决方案
2025-05-04 06:11:42作者:劳婵绚Shirley
问题背景
在Milvus分布式向量数据库的最新版本中,用户报告了一个严重的性能问题:当向启用了分区键(partition-key)且包含多个分片(shard)的集合(collection)中插入数据时,流处理节点(streaming node)频繁发生内存不足(OOM)而被系统强制终止的情况。
问题现象
用户在使用Milvus集群时配置了以下环境:
- 部署模式:集群模式
- 消息队列:Pulsar
- 流处理节点配置:2个副本,每个节点限制4核CPU和16GB内存
用户创建了一个具有以下特征的集合:
- 16个分片
- 启用了分区键字段
- 16个分区
- 包含多种数据类型字段(整型、浮点向量、VARCHAR、JSON、数组等)
当进行批量插入操作时(每次插入50,000条记录),在插入约668万条记录后,两个流处理节点相继因内存不足而重启。监控数据显示流处理节点的内存使用量在短时间内急剧上升,最终超过设定的内存限制。
技术分析
经过深入分析,发现问题根源在于Milvus的同步管理机制。在#39275提交引入的pchannel级别刷新器(pchannel-level flusher)增强后,同步管理器(sync manager)会在每个pchannel级别启动。这导致同步策略无法在同一流处理节点上获得写入缓冲区(writebuffer)的全局视图。
具体来说,问题表现为:
- 每个pchannel独立管理自己的同步过程,缺乏全局协调
- 当有大量分片和分区时,内存消耗会成倍增加
- 现有的内存管理策略无法有效控制这种分散式的内存使用模式
解决方案
开发团队提出了两个关键修复方案:
-
全局视图同步管理(#40606)
- 重构同步管理器,使其能够获取所有pchannel的全局状态
- 实现跨pchannel的内存使用协调机制
- 优化同步策略,基于整体内存使用情况做出决策
-
内存使用优化(#40555)
- 改进内存分配和回收机制
- 添加更严格的内存使用监控
- 实现更智能的背压(backpressure)机制
这些修复已在主分支的5735c3ef199f76cfcc1f4161840d27fe2e89e4c0提交中合并,用户可以通过更新到包含该修复的版本来解决此问题。
最佳实践建议
对于使用类似配置的用户,建议:
- 监控流处理节点的内存使用情况,特别是在高并发插入场景下
- 根据分片和分区数量合理配置流处理节点的内存资源
- 考虑分批插入数据,避免单次操作消耗过多内存
- 定期升级到最新稳定版本,获取性能优化和错误修复
通过以上改进和优化,Milvus在处理多分片、多分区的大规模数据插入时,流处理节点的稳定性和可靠性得到了显著提升。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
417
仓颉编程语言运行时与标准库。
Cangjie
130
430