Milvus集群中流处理节点内存溢出问题分析与解决方案
2025-05-04 02:16:57作者:劳婵绚Shirley
问题背景
在Milvus分布式向量数据库的最新版本中,用户报告了一个严重的性能问题:当向启用了分区键(partition-key)且包含多个分片(shard)的集合(collection)中插入数据时,流处理节点(streaming node)频繁发生内存不足(OOM)而被系统强制终止的情况。
问题现象
用户在使用Milvus集群时配置了以下环境:
- 部署模式:集群模式
- 消息队列:Pulsar
- 流处理节点配置:2个副本,每个节点限制4核CPU和16GB内存
用户创建了一个具有以下特征的集合:
- 16个分片
- 启用了分区键字段
- 16个分区
- 包含多种数据类型字段(整型、浮点向量、VARCHAR、JSON、数组等)
当进行批量插入操作时(每次插入50,000条记录),在插入约668万条记录后,两个流处理节点相继因内存不足而重启。监控数据显示流处理节点的内存使用量在短时间内急剧上升,最终超过设定的内存限制。
技术分析
经过深入分析,发现问题根源在于Milvus的同步管理机制。在#39275提交引入的pchannel级别刷新器(pchannel-level flusher)增强后,同步管理器(sync manager)会在每个pchannel级别启动。这导致同步策略无法在同一流处理节点上获得写入缓冲区(writebuffer)的全局视图。
具体来说,问题表现为:
- 每个pchannel独立管理自己的同步过程,缺乏全局协调
- 当有大量分片和分区时,内存消耗会成倍增加
- 现有的内存管理策略无法有效控制这种分散式的内存使用模式
解决方案
开发团队提出了两个关键修复方案:
-
全局视图同步管理(#40606)
- 重构同步管理器,使其能够获取所有pchannel的全局状态
- 实现跨pchannel的内存使用协调机制
- 优化同步策略,基于整体内存使用情况做出决策
-
内存使用优化(#40555)
- 改进内存分配和回收机制
- 添加更严格的内存使用监控
- 实现更智能的背压(backpressure)机制
这些修复已在主分支的5735c3ef199f76cfcc1f4161840d27fe2e89e4c0提交中合并,用户可以通过更新到包含该修复的版本来解决此问题。
最佳实践建议
对于使用类似配置的用户,建议:
- 监控流处理节点的内存使用情况,特别是在高并发插入场景下
- 根据分片和分区数量合理配置流处理节点的内存资源
- 考虑分批插入数据,避免单次操作消耗过多内存
- 定期升级到最新稳定版本,获取性能优化和错误修复
通过以上改进和优化,Milvus在处理多分片、多分区的大规模数据插入时,流处理节点的稳定性和可靠性得到了显著提升。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143