Quivr项目中的检索与生成评估技术实现
2025-05-03 12:19:03作者:温艾琴Wonderful
在Quivr项目的开发过程中,团队正在构建一套完整的检索与生成评估系统,这是提升问答系统性能的关键环节。本文将详细介绍该评估系统的技术实现方案。
评估数据集准备
评估过程首先需要准备合适的数据集。Quivr团队考虑使用包含135个问答对的数据子集,每个问题对应5个HTML格式的文档,总计675个文档。这种结构化的数据集设计能够全面测试系统的检索和生成能力。
评估流程设计
评估流程分为多个严谨的技术步骤:
-
数据加载阶段:系统需要从参考数据集中加载评估所需的原始数据,这是整个评估过程的基础。
-
文档预处理阶段:
- 解析HTML格式的文档内容
- 对文档进行智能分块处理
- 为每个文本块生成嵌入向量 这一阶段的技术实现直接影响到后续检索的准确性。
-
问答测试阶段:
- 从数据集中提取测试问题
- 使用Quivr的RAG工作流生成答案 系统需要处理各种类型的问题,验证其在实际场景中的表现。
-
评估指标计算:
- 对比系统生成的答案与标准答案
- 计算多种评估指标 这一步骤需要设计合理的评价标准来量化系统性能。
-
结果记录与分析:
- 将评估结果记录到实验跟踪系统
- 设置性能阈值触发警报 这为持续改进系统提供了数据支持。
技术实现要点
在具体实现上,团队重点关注以下几个技术环节:
-
文档处理技术:HTML文档的解析需要处理各种标签和格式,确保提取出干净的文本内容。分块策略需要考虑语义完整性,避免信息割裂。
-
嵌入模型选择:选择适合领域特性的嵌入模型对检索性能至关重要,需要平衡准确性和计算效率。
-
RAG工作流优化:检索-生成流程中的每个组件都需要精心调优,包括检索器的召回率、排序算法的准确性以及生成模型的相关性。
-
评估指标设计:除了传统的准确率、召回率等指标,还需要考虑生成答案的流畅性、相关性和事实准确性等维度。
持续集成与监控
该评估系统将集成到CI/CD流程中,实现:
- 自动化测试流程
- 性能基准监控
- 异常警报机制 这种自动化评估体系能够及时发现性能退化,保证系统质量的持续稳定。
通过这套评估系统,Quivr团队能够科学地衡量和改进系统的检索与生成能力,为用户提供更高质量的问答服务。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-TerminusDeepSeek-V3.1-Terminus是V3的更新版,修复语言问题,并优化了代码与搜索智能体性能。Python00
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0268cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AudioFly
AudioFly is a text-to-audio generation model based on the LDM architecture. It produces high-fidelity sounds at 44.1 kHz sampling rate with strong alignment to text prompts, suitable for sound effects, music, and multi-event audio synthesis tasks.Python00- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析5 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.94 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
554

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
887
394

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
512