Quivr项目中的检索与生成评估技术实现
2025-05-03 06:16:15作者:温艾琴Wonderful
在Quivr项目的开发过程中,团队正在构建一套完整的检索与生成评估系统,这是提升问答系统性能的关键环节。本文将详细介绍该评估系统的技术实现方案。
评估数据集准备
评估过程首先需要准备合适的数据集。Quivr团队考虑使用包含135个问答对的数据子集,每个问题对应5个HTML格式的文档,总计675个文档。这种结构化的数据集设计能够全面测试系统的检索和生成能力。
评估流程设计
评估流程分为多个严谨的技术步骤:
-
数据加载阶段:系统需要从参考数据集中加载评估所需的原始数据,这是整个评估过程的基础。
-
文档预处理阶段:
- 解析HTML格式的文档内容
- 对文档进行智能分块处理
- 为每个文本块生成嵌入向量 这一阶段的技术实现直接影响到后续检索的准确性。
-
问答测试阶段:
- 从数据集中提取测试问题
- 使用Quivr的RAG工作流生成答案 系统需要处理各种类型的问题,验证其在实际场景中的表现。
-
评估指标计算:
- 对比系统生成的答案与标准答案
- 计算多种评估指标 这一步骤需要设计合理的评价标准来量化系统性能。
-
结果记录与分析:
- 将评估结果记录到实验跟踪系统
- 设置性能阈值触发警报 这为持续改进系统提供了数据支持。
技术实现要点
在具体实现上,团队重点关注以下几个技术环节:
-
文档处理技术:HTML文档的解析需要处理各种标签和格式,确保提取出干净的文本内容。分块策略需要考虑语义完整性,避免信息割裂。
-
嵌入模型选择:选择适合领域特性的嵌入模型对检索性能至关重要,需要平衡准确性和计算效率。
-
RAG工作流优化:检索-生成流程中的每个组件都需要精心调优,包括检索器的召回率、排序算法的准确性以及生成模型的相关性。
-
评估指标设计:除了传统的准确率、召回率等指标,还需要考虑生成答案的流畅性、相关性和事实准确性等维度。
持续集成与监控
该评估系统将集成到CI/CD流程中,实现:
- 自动化测试流程
- 性能基准监控
- 异常警报机制 这种自动化评估体系能够及时发现性能退化,保证系统质量的持续稳定。
通过这套评估系统,Quivr团队能够科学地衡量和改进系统的检索与生成能力,为用户提供更高质量的问答服务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692