Quivr项目中的检索与生成评估技术实现
2025-05-03 12:19:03作者:温艾琴Wonderful
在Quivr项目的开发过程中,团队正在构建一套完整的检索与生成评估系统,这是提升问答系统性能的关键环节。本文将详细介绍该评估系统的技术实现方案。
评估数据集准备
评估过程首先需要准备合适的数据集。Quivr团队考虑使用包含135个问答对的数据子集,每个问题对应5个HTML格式的文档,总计675个文档。这种结构化的数据集设计能够全面测试系统的检索和生成能力。
评估流程设计
评估流程分为多个严谨的技术步骤:
-
数据加载阶段:系统需要从参考数据集中加载评估所需的原始数据,这是整个评估过程的基础。
-
文档预处理阶段:
- 解析HTML格式的文档内容
- 对文档进行智能分块处理
- 为每个文本块生成嵌入向量 这一阶段的技术实现直接影响到后续检索的准确性。
-
问答测试阶段:
- 从数据集中提取测试问题
- 使用Quivr的RAG工作流生成答案 系统需要处理各种类型的问题,验证其在实际场景中的表现。
-
评估指标计算:
- 对比系统生成的答案与标准答案
- 计算多种评估指标 这一步骤需要设计合理的评价标准来量化系统性能。
-
结果记录与分析:
- 将评估结果记录到实验跟踪系统
- 设置性能阈值触发警报 这为持续改进系统提供了数据支持。
技术实现要点
在具体实现上,团队重点关注以下几个技术环节:
-
文档处理技术:HTML文档的解析需要处理各种标签和格式,确保提取出干净的文本内容。分块策略需要考虑语义完整性,避免信息割裂。
-
嵌入模型选择:选择适合领域特性的嵌入模型对检索性能至关重要,需要平衡准确性和计算效率。
-
RAG工作流优化:检索-生成流程中的每个组件都需要精心调优,包括检索器的召回率、排序算法的准确性以及生成模型的相关性。
-
评估指标设计:除了传统的准确率、召回率等指标,还需要考虑生成答案的流畅性、相关性和事实准确性等维度。
持续集成与监控
该评估系统将集成到CI/CD流程中,实现:
- 自动化测试流程
- 性能基准监控
- 异常警报机制 这种自动化评估体系能够及时发现性能退化,保证系统质量的持续稳定。
通过这套评估系统,Quivr团队能够科学地衡量和改进系统的检索与生成能力,为用户提供更高质量的问答服务。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0308- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
268
308

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3