EMDM 的项目扩展与二次开发
2025-06-04 18:03:41作者:宗隆裙
项目的基础介绍
EMDM(Efficient Motion Diffusion Model)是一个用于快速、高质量生成人体运动的开源项目。该项目基于一篇学术论文,提出了一种高效的运动扩散模型,旨在解决现有运动扩散模型在生成速度与质量之间的平衡问题。EMDM 通过建模复杂的去噪分布,在多个采样步骤中实现更大采样步长和更少的步骤,从而显著加速生成过程。
项目的核心功能
- 高效运动生成:EMDM 能够在保持高质量的前提下,实现快速的人体运动生成。
- 条件去噪扩散 GAN:通过捕获基于控制信号(文本描述和去噪时间步)的多模态数据分布,进一步优化生成效果。
- 运动几何损失:在训练过程中使用运动几何损失,提高运动质量并减少不希望的伪影。
项目使用了哪些框架或库?
- PyTorch:用于深度学习模型的构建和训练。
- CLIP:用于文本和图像的连接,提高生成模型的条件控制能力。
- SMPL、SMPL-X:用于人体模型的表示和处理。
- PyTorch3D:提供3D视觉相关工具和模型。
项目的代码目录及介绍
项目的代码目录结构清晰,主要包括以下部分:
- assets:存储示例文本提示、动作名称等数据。
- data_loaders:包含数据加载器的代码。
- dataset:定义了数据集处理的类和方法。
- diffusion:实现了运动扩散模型的核心算法。
- eval:提供了模型评估的相关代码。
- model:包含了模型架构的定义。
- models:实现了多种不同的模型变体。
- options:定义了模型的配置选项。
- sample:包含模型采样的代码。
- score_sde:实现了分数SDE(随机微分方程)的代码。
- train:包含模型训练的代码。
- utils:提供了各种工具函数和类。
对项目进行扩展或者二次开发的方向
-
模型优化:可以根据需求对模型结构进行调整,例如增加更多的层或使用不同的激活函数,以提高生成效果。
-
数据增强:引入更多样化的数据集,以丰富模型的训练数据和生成能力。
-
控制接口:开发更友好的用户接口,允许用户通过更直观的方式控制生成过程。
-
实时交互:实现实时交互功能,让用户能够即时调整生成参数,观看效果。
-
多模态扩展:结合其他模态的数据,如音频或视频,实现多模态的人体运动生成。
通过这些扩展和二次开发,EMDM 项目可以更好地服务于人体运动生成领域,为研究人员和开发者提供有力的工具。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143