Griptape项目中RAG引擎的引用标注模块工作原理解析
2025-07-03 19:02:14作者:管翌锬
在Griptape项目的RAG(检索增强生成)引擎使用过程中,开发者可能会遇到一个有趣的现象:当使用不同的响应模块处理相同查询时,结果会出现不一致的情况。本文将从技术角度深入分析这一现象背后的原因,并解释各响应模块的工作原理差异。
核心问题现象
在Griptape框架中,当使用FootnotePromptResponseRagModule模块时,对于简单查询如"pie"可能返回"找不到答案"的结果,而其他模块如TextChunksResponseRagModule和PromptResponseRagModule却能正确返回相关内容。这种差异源于各模块不同的设计目的和工作机制。
三种响应模块的技术对比
-
文本块响应模块(TextChunksResponseRagModule)
- 直接返回从向量存储检索到的原始文本块
- 保留所有原始元数据,包括引用信息
- 不经过LLM处理,结果最原始但缺乏提炼
-
提示响应模块(PromptResponseRagModule)
- 将检索到的文本块输入LLM生成精炼回答
- 会丢失原始引用信息
- 回答质量取决于LLM的理解能力
-
脚注提示响应模块(FootnotePromptResponseRagModule)
- 在LLM处理时特别要求标注引用来源
- 需要更明确的查询才能触发引用机制
- 对查询语义的完整性要求更高
问题根源分析
当查询过于简短(如单个词"pie")时,脚注模块的LLM可能认为:
- 查询意图不明确,无法确定用户具体需要什么信息
- 虽然文本块中包含相关词汇,但不足以构成完整的知识引用
- 出于严谨性考虑,选择返回"找不到答案"而非强行关联
相比之下,文本块模块只是机械匹配,而普通提示模块的LLM可能会尝试猜测用户意图,因此表现不同。
最佳实践建议
- 优化查询设计:使用完整的问题句式而非关键词
- 模块组合使用:同时使用多种模块获取全面结果
- 理解模块特性:根据需求选择合适的响应模块
- 调试技巧:通过日志分析各模块的中间处理结果
技术实现细节
在底层实现上,Griptape的RAG引擎采用了分阶段处理架构:
- 检索阶段统一获取相关文本块
- 响应阶段根据模块类型进行差异化处理
- 脚注模块会向LLM注入特殊的引用指令模板
- 各模块的prompt工程设计存在显著差异
这种架构设计既保持了核心检索逻辑的统一,又允许响应方式的灵活定制。
总结
Griptape框架中的不同RAG响应模块针对不同场景设计,理解它们的工作原理差异对于构建高质量的问答系统至关重要。开发者应当根据具体需求选择合适的模块组合,并通过优化查询质量来获得最佳效果。框架的这种设计实际上提供了更大的灵活性,使得开发者可以精确控制信息检索和呈现的各个环节。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869