Griptape框架中RAG引擎与重排序驱动器的集成实践
2025-07-03 10:36:55作者:郁楠烈Hubert
在构建基于检索增强生成(RAG)的系统时,重排序(Reranking)是一个关键步骤,它可以显著提升检索结果的质量。本文将详细介绍如何在Griptape框架中正确配置RAG引擎以使用重排序功能。
RAG引擎的基本结构
Griptape框架中的RAG引擎由三个主要阶段组成:
- 查询阶段(Query Stage):负责处理用户原始查询,可能包括翻译、改写等操作
- 检索阶段(Retrieval Stage):从向量数据库中获取相关文档片段
- 响应阶段(Response Stage):基于检索结果生成最终回答
重排序模块的正确集成方式
许多开发者初次尝试集成重排序功能时,会错误地将TextChunksRerankRagModule放在retrieval_modules列表中。实际上,重排序模块应该作为rerank_module参数单独配置在检索阶段。
rag_engine = RagEngine(
query_stage=QueryRagStage(
query_modules=[
TranslateQueryRagModule(prompt_driver=prompt_driver, language="english")
]
),
retrieval_stage=RetrievalRagStage(
max_chunks=5,
retrieval_modules=[
VectorStoreRetrievalRagModule(
name="MyAwesomeRetriever",
vector_store_driver=vector_store,
query_params={"top_n": 20},
)
],
rerank_module=TextChunksRerankRagModule(rerank_driver=LocalRerankDriver()),
),
response_stage=ResponseRagStage(
response_modules=[
PromptResponseRagModule(
prompt_driver=prompt_driver,
rulesets=[Ruleset(name="persona", rules=[Rule("Talk like a pirate")])],
)
]
),
)
重排序的工作流程
- 向量检索模块首先从数据库中获取大量候选片段(如top_n=20)
- 重排序模块对这些候选片段进行重新评分和排序
- 最终选择评分最高的几个片段(max_chunks=5)传递给响应阶段
这种两阶段检索策略(粗排+精排)是工业界常见的做法,可以平衡召回率和准确率。
开发环境配置建议
在开发过程中,建议使用Ruff格式化工具而非Black,以保持与项目预提交检查的一致性。可以通过以下命令自动修复导入排序问题:
poetry run ruff format --fix
总结
正确配置重排序模块可以显著提升RAG系统的性能。Griptape框架通过清晰的阶段划分,使得开发者可以灵活地组合各种检索和重排序策略。理解每个阶段的作用和模块的正确放置位置,是构建高效RAG应用的关键。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882