Griptape框架中RAG引擎与重排序驱动器的集成实践
2025-07-03 20:14:34作者:郁楠烈Hubert
在构建基于检索增强生成(RAG)的系统时,重排序(Reranking)是一个关键步骤,它可以显著提升检索结果的质量。本文将详细介绍如何在Griptape框架中正确配置RAG引擎以使用重排序功能。
RAG引擎的基本结构
Griptape框架中的RAG引擎由三个主要阶段组成:
- 查询阶段(Query Stage):负责处理用户原始查询,可能包括翻译、改写等操作
- 检索阶段(Retrieval Stage):从向量数据库中获取相关文档片段
- 响应阶段(Response Stage):基于检索结果生成最终回答
重排序模块的正确集成方式
许多开发者初次尝试集成重排序功能时,会错误地将TextChunksRerankRagModule
放在retrieval_modules
列表中。实际上,重排序模块应该作为rerank_module
参数单独配置在检索阶段。
rag_engine = RagEngine(
query_stage=QueryRagStage(
query_modules=[
TranslateQueryRagModule(prompt_driver=prompt_driver, language="english")
]
),
retrieval_stage=RetrievalRagStage(
max_chunks=5,
retrieval_modules=[
VectorStoreRetrievalRagModule(
name="MyAwesomeRetriever",
vector_store_driver=vector_store,
query_params={"top_n": 20},
)
],
rerank_module=TextChunksRerankRagModule(rerank_driver=LocalRerankDriver()),
),
response_stage=ResponseRagStage(
response_modules=[
PromptResponseRagModule(
prompt_driver=prompt_driver,
rulesets=[Ruleset(name="persona", rules=[Rule("Talk like a pirate")])],
)
]
),
)
重排序的工作流程
- 向量检索模块首先从数据库中获取大量候选片段(如top_n=20)
- 重排序模块对这些候选片段进行重新评分和排序
- 最终选择评分最高的几个片段(max_chunks=5)传递给响应阶段
这种两阶段检索策略(粗排+精排)是工业界常见的做法,可以平衡召回率和准确率。
开发环境配置建议
在开发过程中,建议使用Ruff格式化工具而非Black,以保持与项目预提交检查的一致性。可以通过以下命令自动修复导入排序问题:
poetry run ruff format --fix
总结
正确配置重排序模块可以显著提升RAG系统的性能。Griptape框架通过清晰的阶段划分,使得开发者可以灵活地组合各种检索和重排序策略。理解每个阶段的作用和模块的正确放置位置,是构建高效RAG应用的关键。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648