GLM-4项目中的Tokenizer参数兼容性问题分析与解决方案
2025-06-03 06:42:10作者:俞予舒Fleming
问题背景
在使用GLM-4项目进行对话系统开发时,部分开发者遇到了Tokenizer参数兼容性问题。具体表现为在运行trans_cli_demo.py脚本时,系统抛出TypeError异常,提示_pad()函数接收到了未预期的关键字参数'padding_side'。
问题现象
当用户在干净环境中安装项目依赖并运行trans_cli_demo.py脚本时,系统会报错:
TypeError: _pad() got an unexpected keyword argument 'padding_side'
这个问题主要出现在较新版本的transformers库(4.44.2以上版本)中,因为这些版本对tokenizer的padding处理方式进行了更新,增加了padding_side参数来控制padding的方向。
技术分析
根本原因
该问题的本质是GLM-4项目中ChatGLM4Tokenizer类的_pad方法签名与最新版transformers库不兼容。transformers库在更新后,调用tokenizer的pad方法时会传入padding_side参数,但原始的ChatGLM4Tokenizer._pad方法并未定义接收这个参数。
影响范围
这个问题会影响所有使用较新版本transformers库(4.44.2以上)运行GLM-4项目的场景,特别是:
- 使用官方示例脚本trans_cli_demo.py进行对话测试
- 使用GLM-4-9B或相关模型进行推理
- 在新环境中安装最新依赖的情况
解决方案
临时解决方案
对于无法立即更新模型文件的用户,可以采取以下临时方案:
- 降级transformers库版本至4.44.2:
pip install transformers==4.44.2
- 手动修改tokenizer代码: 在tokenization_chatglm.py文件中,修改ChatGLM4Tokenizer类的_pad方法,添加padding_side参数:
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_side: str = "left", # 新增参数
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
# 原有实现代码
推荐解决方案
建议用户从官方渠道获取最新版本的模型文件,其中已经修复了这个问题。最新版本的ChatGLM4Tokenizer已经正确实现了_pad方法,能够兼容transformers库的新特性。
注意事项
- 使用降级方案时,可能会遇到其他兼容性问题,如attention mask警告
- 手动修改代码的方案需要确保修改后的实现与transformers库的预期行为一致
- 建议在修改前备份原始文件,以便出现问题时可以回滚
最佳实践
对于新项目,建议:
- 使用官方提供的最新模型文件
- 保持transformers库版本与项目推荐版本一致
- 在部署前进行全面测试,确保所有功能正常
对于已有项目升级,建议:
- 先在小规模测试环境中验证兼容性
- 逐步升级依赖版本,监控系统行为
- 关注官方更新日志,了解API变更情况
通过以上分析和解决方案,开发者可以顺利解决GLM-4项目中的tokenizer参数兼容性问题,确保项目正常运行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869