GLM-4项目中的Tokenizer参数兼容性问题分析与解决方案
2025-06-03 08:41:32作者:俞予舒Fleming
问题背景
在使用GLM-4项目进行对话系统开发时,部分开发者遇到了Tokenizer参数兼容性问题。具体表现为在运行trans_cli_demo.py脚本时,系统抛出TypeError异常,提示_pad()函数接收到了未预期的关键字参数'padding_side'。
问题现象
当用户在干净环境中安装项目依赖并运行trans_cli_demo.py脚本时,系统会报错:
TypeError: _pad() got an unexpected keyword argument 'padding_side'
这个问题主要出现在较新版本的transformers库(4.44.2以上版本)中,因为这些版本对tokenizer的padding处理方式进行了更新,增加了padding_side参数来控制padding的方向。
技术分析
根本原因
该问题的本质是GLM-4项目中ChatGLM4Tokenizer类的_pad方法签名与最新版transformers库不兼容。transformers库在更新后,调用tokenizer的pad方法时会传入padding_side参数,但原始的ChatGLM4Tokenizer._pad方法并未定义接收这个参数。
影响范围
这个问题会影响所有使用较新版本transformers库(4.44.2以上)运行GLM-4项目的场景,特别是:
- 使用官方示例脚本trans_cli_demo.py进行对话测试
- 使用GLM-4-9B或相关模型进行推理
- 在新环境中安装最新依赖的情况
解决方案
临时解决方案
对于无法立即更新模型文件的用户,可以采取以下临时方案:
- 降级transformers库版本至4.44.2:
pip install transformers==4.44.2
- 手动修改tokenizer代码: 在tokenization_chatglm.py文件中,修改ChatGLM4Tokenizer类的_pad方法,添加padding_side参数:
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_side: str = "left", # 新增参数
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
# 原有实现代码
推荐解决方案
建议用户从官方渠道获取最新版本的模型文件,其中已经修复了这个问题。最新版本的ChatGLM4Tokenizer已经正确实现了_pad方法,能够兼容transformers库的新特性。
注意事项
- 使用降级方案时,可能会遇到其他兼容性问题,如attention mask警告
- 手动修改代码的方案需要确保修改后的实现与transformers库的预期行为一致
- 建议在修改前备份原始文件,以便出现问题时可以回滚
最佳实践
对于新项目,建议:
- 使用官方提供的最新模型文件
- 保持transformers库版本与项目推荐版本一致
- 在部署前进行全面测试,确保所有功能正常
对于已有项目升级,建议:
- 先在小规模测试环境中验证兼容性
- 逐步升级依赖版本,监控系统行为
- 关注官方更新日志,了解API变更情况
通过以上分析和解决方案,开发者可以顺利解决GLM-4项目中的tokenizer参数兼容性问题,确保项目正常运行。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
230
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
583
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.52 K