使用ROC曲线评估逻辑回归模型性能 - GenTang/intro_ds项目解析
2025-06-29 02:39:06作者:董灵辛Dennis
什么是ROC曲线
ROC曲线(Receiver Operating Characteristic Curve)是评估二分类模型性能的重要工具。它以假正率(False Positive Rate)为横轴,真正率(True Positive Rate)为纵轴,直观展示了分类器在不同阈值下的表现。
项目背景
GenTang/intro_ds项目中的这个示例展示了如何使用Python和scikit-learn库绘制ROC曲线并计算AUC值(Area Under Curve),这是评估逻辑回归模型性能的标准方法。
代码解析
数据准备
首先从CSV文件读取数据,选取了以下特征列:
- age(年龄)
- education_num(受教育年限)
- capital_gain(资本收益)
- capital_loss(资本损失)
- hours_per_week(每周工作时长)
标签列"label"是二分类目标变量,通过transLabel函数将其转换为数值型编码(0和1)。
模型训练
使用逻辑回归模型进行训练:
- 将数据分为训练集和测试集(80%训练,20%测试)
- 使用
LogisticRegression类训练模型 - 在测试集上预测概率值(而非直接预测类别)
ROC曲线计算
关键步骤:
- 使用
metrics.roc_curve计算不同阈值下的FPR和TPR - 使用
metrics.auc计算曲线下面积(AUC) - 通过
visualizeRoc函数可视化结果
可视化实现
可视化函数visualizeRoc做了以下工作:
- 设置中文字体显示
- 创建图形框和子图
- 绘制对角线参考线(红色虚线)
- 绘制ROC曲线(黑色实线)
- 填充曲线下方区域(灰色半透明)
- 显示AUC值在图例中
技术要点
-
AUC值解读:AUC值范围在0.5到1之间,越接近1表示模型性能越好。0.5相当于随机猜测。
-
ROC曲线特点:
- 曲线越靠近左上角,模型性能越好
- 对角线表示无判别力的模型
- 曲线下方的面积即为AUC值
-
逻辑回归概率输出:使用
predict_proba方法获取样本属于正类的概率,而非直接使用predict得到的分类结果。
实际应用建议
- 当类别不平衡时,ROC曲线比准确率更能反映模型真实性能
- 可以比较不同模型的ROC曲线来选择最优模型
- AUC值提供了单一数值来评估模型整体性能
- 在实际应用中,可根据业务需求选择ROC曲线上特定点对应的阈值
总结
通过GenTang/intro_ds项目中的这个示例,我们学习了如何使用Python实现逻辑回归模型的ROC曲线绘制和AUC计算。这是评估二分类模型性能的标准方法,特别适用于类别不平衡的场景。掌握这些技术对于数据科学家评估和比较不同模型的性能至关重要。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30