使用ROC曲线评估逻辑回归模型性能 - GenTang/intro_ds项目解析
2025-06-29 20:39:04作者:董灵辛Dennis
什么是ROC曲线
ROC曲线(Receiver Operating Characteristic Curve)是评估二分类模型性能的重要工具。它以假正率(False Positive Rate)为横轴,真正率(True Positive Rate)为纵轴,直观展示了分类器在不同阈值下的表现。
项目背景
GenTang/intro_ds项目中的这个示例展示了如何使用Python和scikit-learn库绘制ROC曲线并计算AUC值(Area Under Curve),这是评估逻辑回归模型性能的标准方法。
代码解析
数据准备
首先从CSV文件读取数据,选取了以下特征列:
- age(年龄)
- education_num(受教育年限)
- capital_gain(资本收益)
- capital_loss(资本损失)
- hours_per_week(每周工作时长)
标签列"label"是二分类目标变量,通过transLabel函数将其转换为数值型编码(0和1)。
模型训练
使用逻辑回归模型进行训练:
- 将数据分为训练集和测试集(80%训练,20%测试)
- 使用
LogisticRegression类训练模型 - 在测试集上预测概率值(而非直接预测类别)
ROC曲线计算
关键步骤:
- 使用
metrics.roc_curve计算不同阈值下的FPR和TPR - 使用
metrics.auc计算曲线下面积(AUC) - 通过
visualizeRoc函数可视化结果
可视化实现
可视化函数visualizeRoc做了以下工作:
- 设置中文字体显示
- 创建图形框和子图
- 绘制对角线参考线(红色虚线)
- 绘制ROC曲线(黑色实线)
- 填充曲线下方区域(灰色半透明)
- 显示AUC值在图例中
技术要点
-
AUC值解读:AUC值范围在0.5到1之间,越接近1表示模型性能越好。0.5相当于随机猜测。
-
ROC曲线特点:
- 曲线越靠近左上角,模型性能越好
- 对角线表示无判别力的模型
- 曲线下方的面积即为AUC值
-
逻辑回归概率输出:使用
predict_proba方法获取样本属于正类的概率,而非直接使用predict得到的分类结果。
实际应用建议
- 当类别不平衡时,ROC曲线比准确率更能反映模型真实性能
- 可以比较不同模型的ROC曲线来选择最优模型
- AUC值提供了单一数值来评估模型整体性能
- 在实际应用中,可根据业务需求选择ROC曲线上特定点对应的阈值
总结
通过GenTang/intro_ds项目中的这个示例,我们学习了如何使用Python实现逻辑回归模型的ROC曲线绘制和AUC计算。这是评估二分类模型性能的标准方法,特别适用于类别不平衡的场景。掌握这些技术对于数据科学家评估和比较不同模型的性能至关重要。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
317
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347