使用ROC曲线评估逻辑回归模型性能 - GenTang/intro_ds项目解析
2025-06-29 23:29:39作者:董灵辛Dennis
什么是ROC曲线
ROC曲线(Receiver Operating Characteristic Curve)是评估二分类模型性能的重要工具。它以假正率(False Positive Rate)为横轴,真正率(True Positive Rate)为纵轴,直观展示了分类器在不同阈值下的表现。
项目背景
GenTang/intro_ds项目中的这个示例展示了如何使用Python和scikit-learn库绘制ROC曲线并计算AUC值(Area Under Curve),这是评估逻辑回归模型性能的标准方法。
代码解析
数据准备
首先从CSV文件读取数据,选取了以下特征列:
- age(年龄)
- education_num(受教育年限)
- capital_gain(资本收益)
- capital_loss(资本损失)
- hours_per_week(每周工作时长)
标签列"label"是二分类目标变量,通过transLabel函数将其转换为数值型编码(0和1)。
模型训练
使用逻辑回归模型进行训练:
- 将数据分为训练集和测试集(80%训练,20%测试)
- 使用
LogisticRegression类训练模型 - 在测试集上预测概率值(而非直接预测类别)
ROC曲线计算
关键步骤:
- 使用
metrics.roc_curve计算不同阈值下的FPR和TPR - 使用
metrics.auc计算曲线下面积(AUC) - 通过
visualizeRoc函数可视化结果
可视化实现
可视化函数visualizeRoc做了以下工作:
- 设置中文字体显示
- 创建图形框和子图
- 绘制对角线参考线(红色虚线)
- 绘制ROC曲线(黑色实线)
- 填充曲线下方区域(灰色半透明)
- 显示AUC值在图例中
技术要点
-
AUC值解读:AUC值范围在0.5到1之间,越接近1表示模型性能越好。0.5相当于随机猜测。
-
ROC曲线特点:
- 曲线越靠近左上角,模型性能越好
- 对角线表示无判别力的模型
- 曲线下方的面积即为AUC值
-
逻辑回归概率输出:使用
predict_proba方法获取样本属于正类的概率,而非直接使用predict得到的分类结果。
实际应用建议
- 当类别不平衡时,ROC曲线比准确率更能反映模型真实性能
- 可以比较不同模型的ROC曲线来选择最优模型
- AUC值提供了单一数值来评估模型整体性能
- 在实际应用中,可根据业务需求选择ROC曲线上特定点对应的阈值
总结
通过GenTang/intro_ds项目中的这个示例,我们学习了如何使用Python实现逻辑回归模型的ROC曲线绘制和AUC计算。这是评估二分类模型性能的标准方法,特别适用于类别不平衡的场景。掌握这些技术对于数据科学家评估和比较不同模型的性能至关重要。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249