GenTang/intro_ds项目:多元逻辑回归分类实战解析
2025-06-29 13:29:14作者:史锋燃Gardner
引言
逻辑回归是机器学习中最基础且强大的分类算法之一。虽然名为"回归",但它实际上是一种分类方法。在GenTang/intro_ds项目的ch05-logit章节中,提供了一个非常实用的多元逻辑回归分类示例,展示了如何处理具有多个类别的分类问题。本文将深入解析这个示例,帮助读者理解多元逻辑回归的核心概念和实现方法。
多元逻辑回归概述
多元逻辑回归(Multinomial Logistic Regression)是二分类逻辑回归的扩展,用于处理目标变量有三个或更多类别的情况。与二分类问题不同,多元分类需要特殊的处理策略:
- Multinomial方法:直接扩展逻辑回归模型,使用softmax函数同时计算所有类别的概率
- One-vs-Rest(OVR)方法:为每个类别训练一个二分类器,将该类别与其他所有类别区分开
代码解析
数据准备
示例代码首先使用pandas读取CSV格式的数据文件:
def readData(path):
data = pd.read_csv(path)
data.columns = ["label", "x1", "x2"]
return data
数据包含三列:label表示类别标签,x1和x2是两个特征维度。这种结构非常适合可视化展示分类效果。
模型构建与训练
核心函数multiLogit实现了多元逻辑回归的两种不同方法:
model = LogisticRegression(multi_class=methods[i], solver='sag',
max_iter=1000, random_state=42)
model.fit(data[features], data[labels])
关键参数说明:
multi_class:指定多元分类策略('multinomial'或'ovr')solver:使用'sag'(随机平均梯度下降)优化算法max_iter:最大迭代次数random_state:随机种子,保证结果可复现
结果可视化
代码通过生成网格点并预测其类别,实现了分类结果的可视化:
area = np.dstack(
np.meshgrid(np.arange(x1Min, x1Max, 0.02), np.arange(x2Min, x2Max, 0.02)
).reshape(-1, 2)
pic = model.predict(area)
这种可视化方法清晰地展示了决策边界和分类区域,使用不同颜色表示不同类别。
技术要点深入
两种多元分类策略比较
-
Multinomial方法:
- 使用softmax函数计算各类别概率
- 所有类别共享同一组参数
- 计算复杂度较高但通常更准确
-
OVR(One-vs-Rest)方法:
- 为每个类别训练一个二分类器
- 最终选择概率最高的类别
- 训练速度快但可能忽略类别间关系
优化算法选择
示例中使用了'sag'(Stochastic Average Gradient)优化算法,这是处理大规模数据集的有效方法。其他可选算法包括:
- 'lbfgs':适合小数据集
- 'liblinear':适用于二分类问题
- 'newton-cg':需要计算Hessian矩阵
实践建议
- 数据预处理:逻辑回归对特征缩放敏感,建议标准化或归一化特征
- 类别不平衡:对于不平衡数据,考虑设置
class_weight参数 - 正则化:通过
C参数控制正则化强度,防止过拟合 - 评估指标:多元分类常用混淆矩阵、分类报告等评估方法
总结
GenTang/intro_ds项目中的这个多元逻辑回归示例很好地展示了:
- 多元分类问题的两种处理策略
- scikit-learn中逻辑回归的实现方式
- 分类结果的可视化方法
通过这个示例,我们可以深入理解逻辑回归在多元分类问题中的应用,以及不同方法之间的差异。这对于掌握分类算法的基础知识和实际应用都有很大帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355