Stable Diffusion WebUI DirectML 项目中GFPGAN与CodeFormer的兼容性问题分析
问题背景
在Stable Diffusion WebUI DirectML项目中,用户在使用GFPGAN和CodeFormer面部修复功能时遇到了兼容性问题。这些问题主要出现在AMD显卡环境下,特别是当用户启用DirectML支持时。本文将深入分析问题的技术原因,并提供可行的解决方案。
技术分析
核心问题
问题表现为两种主要错误:
-
DMLTensor类型不匹配错误:当使用DirectML后端时,系统会抛出"unbox expects Dml at::Tensor as inputs"的错误。这是由于DirectML对存储访问(storage access)的支持不完善导致的。
-
CUDA与CPU张量类型不匹配:在使用ZLUDA方案时,会出现"Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same"的错误,表明模型权重与输入数据不在同一设备上。
根本原因
-
DirectML限制:
- DirectML不支持某些PyTorch操作,特别是涉及存储访问的操作
- GFPGAN和CodeFormer模型中的某些层需要这些不被支持的操作
- 这是AMD显卡在Windows平台上的一个已知限制
-
ZLUDA兼容性:
- ZLUDA虽然性能更好,但缺少hiprtc支持
- CodeFormer需要hiprtc进行实时编译,因此只能回退到CPU运行
- 模型权重加载到GPU而输入数据在CPU导致类型不匹配
解决方案
方案一:使用旧版本WebUI(1.7)
对于使用GCN架构显卡(如Radeon VII)的用户:
- 回退到WebUI 1.7版本
- 继续使用DirectML后端
- 此方案下GFPGAN和CodeFormer都能正常工作
方案二:使用ZLUDA方案
对于支持ROCm的AMD显卡用户:
- 安装最新版WebUI
- 配置ZLUDA环境
- 注意:
- GFPGAN可以正常工作
- CodeFormer会回退到CPU运行
- 需要额外安装用户构建的ROCm库
方案三:强制使用CPU
临时解决方案:
- 在启动参数中添加:
--use-cpu gfpgan codeformers - 优点:简单易行,兼容所有版本
- 缺点:处理速度较慢
实施建议
-
显卡兼容性检查:
- 确认显卡型号是否在ROCm支持列表中
- 较新的AMD显卡(RX 6000/7000系列)更适合ZLUDA方案
-
环境配置要点:
- 使用ZLUDA时需要完全删除venv目录重新安装
- 确保PATH环境变量包含ZLUDA路径
- 对于不支持的显卡,考虑用户构建的ROCm库
-
性能权衡:
- 追求稳定性:选择WebUI 1.7 + DirectML
- 追求性能:选择最新版 + ZLUDA(牺牲CodeFormer GPU加速)
- 简单使用:强制CPU模式
结论
Stable Diffusion WebUI DirectML项目在AMD显卡上面临的面部修复功能兼容性问题,本质上是由于不同技术方案对PyTorch操作支持程度的差异所致。用户应根据自身硬件条件和功能需求,选择最适合的解决方案。随着ROCm对Windows平台支持的不断完善,未来这些问题有望得到更好的解决。
对于大多数用户,如果面部修复不是核心需求,使用--use-cpu参数是最简单的解决方案;而对于需要高质量面部修复的专业用户,则可能需要根据显卡型号精心配置ZLUDA环境或回退到旧版本。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00